Anomalous transport in heterogeneous media

The diffusion dynamics of particles in heterogeneous media is studied using particle-based simulation techniques. A special focus is placed on systems where the transport of particles at long times exhibits anomalies such as subdiffusive or superdiffusive behavior. First, a two-dimensional model sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2017-08, Vol.226 (14), p.3113-3128
Hauptverfasser: Horbach, Jürgen, Siboni, Nima H., Schnyder, Simon K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diffusion dynamics of particles in heterogeneous media is studied using particle-based simulation techniques. A special focus is placed on systems where the transport of particles at long times exhibits anomalies such as subdiffusive or superdiffusive behavior. First, a two-dimensional model system is considered containing gas particles (tracers) that diffuse through a random arrangement of pinned, disk-shaped particles. This system is similar to a classical Lorentz gas. However, different from the original Lorentz model, soft instead of hard interactions are considered and we also discuss the case where the tracer particles interact with each other. We show that the modification from hard to soft interactions strongly affects anomalous-diffusive transport at high obstacle densities. Second, non-linear active micro-rheology in a glass-forming binary Yukawa mixture is investigated, pulling single particles through a deeply supercooled state by applying a constant force. Here, we observe superdiffusion in force direction and analyze its origin. Finally, we consider the Brownian dynamics of a particle which is pulled through a two-dimensional random force field. We discuss the similarities of this model with the Lorentz gas as well as active micro-rheology in glass-forming systems.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjst/e2017-70081-3