Backbone Coloring for Triangle-free Planar Graphs
Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backb...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2017-07, Vol.33 (3), p.819-824 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 3 |
container_start_page | 819 |
container_title | Acta Mathematicae Applicatae Sinica |
container_volume | 33 |
creator | Bu, Yue-hua Zhang, Shui-ming |
description | Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4. |
doi_str_mv | 10.1007/s10255-017-0700-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927994855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672625859</cqvip_id><sourcerecordid>1927994855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b5c0f5098ace6203a6a4334ca921e79713337c85c446d8c5450b83b4ce8d836f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqXwA9gimA2v_cZfI1RQkCrBUGbLcZ1-EOLUbgf-PalSISamW-650x0h1wzuGIC6zwy4EBSYoqAAKJ6QEZNMUzTIT8kImNTUSIXn5CLnDfRGlGpE2KPzn1VsQzGJTUzrdlnUMRXztHbtsgm0TiEU741rXSqmyXWrfEnOatfkcHXUMfl4fppPXujsbfo6eZhRz43Y0Up4qAUY7XyQHNBJVyKW3hnOgjKKIaLyWviylAvtRSmg0liVPuiFRlnjmNwOuV2K233IO7uJ-9T2lZYZrowptRC9iw0un2LOKdS2S-svl74tA3t4xg7P2H6wPTxjsWf4wOTuMDikP8n_QDfHolVsl9ue-22SiksutDD4A6ZGbwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927994855</pqid></control><display><type>article</type><title>Backbone Coloring for Triangle-free Planar Graphs</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Bu, Yue-hua ; Zhang, Shui-ming</creator><creatorcontrib>Bu, Yue-hua ; Zhang, Shui-ming</creatorcontrib><description>Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-017-0700-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Backbone ; Coloring ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical ; 三角形 ; 主干 ; 子图 ; 平面图 ; 映射 ; 着色 ; 连通图</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2017-07, Vol.33 (3), p.819-824</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-b5c0f5098ace6203a6a4334ca921e79713337c85c446d8c5450b83b4ce8d836f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-017-0700-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-017-0700-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bu, Yue-hua</creatorcontrib><creatorcontrib>Zhang, Shui-ming</creatorcontrib><title>Backbone Coloring for Triangle-free Planar Graphs</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.</description><subject>Applications of Mathematics</subject><subject>Backbone</subject><subject>Coloring</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><subject>三角形</subject><subject>主干</subject><subject>子图</subject><subject>平面图</subject><subject>映射</subject><subject>着色</subject><subject>连通图</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAYhC0EEqXwA9gimA2v_cZfI1RQkCrBUGbLcZ1-EOLUbgf-PalSISamW-650x0h1wzuGIC6zwy4EBSYoqAAKJ6QEZNMUzTIT8kImNTUSIXn5CLnDfRGlGpE2KPzn1VsQzGJTUzrdlnUMRXztHbtsgm0TiEU741rXSqmyXWrfEnOatfkcHXUMfl4fppPXujsbfo6eZhRz43Y0Up4qAUY7XyQHNBJVyKW3hnOgjKKIaLyWviylAvtRSmg0liVPuiFRlnjmNwOuV2K233IO7uJ-9T2lZYZrowptRC9iw0un2LOKdS2S-svl74tA3t4xg7P2H6wPTxjsWf4wOTuMDikP8n_QDfHolVsl9ue-22SiksutDD4A6ZGbwQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bu, Yue-hua</creator><creator>Zhang, Shui-ming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Backbone Coloring for Triangle-free Planar Graphs</title><author>Bu, Yue-hua ; Zhang, Shui-ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b5c0f5098ace6203a6a4334ca921e79713337c85c446d8c5450b83b4ce8d836f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Backbone</topic><topic>Coloring</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><topic>三角形</topic><topic>主干</topic><topic>子图</topic><topic>平面图</topic><topic>映射</topic><topic>着色</topic><topic>连通图</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Yue-hua</creatorcontrib><creatorcontrib>Zhang, Shui-ming</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Yue-hua</au><au>Zhang, Shui-ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backbone Coloring for Triangle-free Planar Graphs</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>33</volume><issue>3</issue><spage>819</spage><epage>824</epage><pages>819-824</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-017-0700-3</doi><tpages>6</tpages><edition>English series</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9673 |
ispartof | Acta Mathematicae Applicatae Sinica, 2017-07, Vol.33 (3), p.819-824 |
issn | 0168-9673 1618-3932 |
language | eng |
recordid | cdi_proquest_journals_1927994855 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Backbone Coloring Math Applications in Computer Science Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical 三角形 主干 子图 平面图 映射 着色 连通图 |
title | Backbone Coloring for Triangle-free Planar Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backbone%20Coloring%20for%20Triangle-free%20Planar%20Graphs&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Bu,%20Yue-hua&rft.date=2017-07-01&rft.volume=33&rft.issue=3&rft.spage=819&rft.epage=824&rft.pages=819-824&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-017-0700-3&rft_dat=%3Cproquest_cross%3E1927994855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927994855&rft_id=info:pmid/&rft_cqvip_id=672625859&rfr_iscdi=true |