Backbone Coloring for Triangle-free Planar Graphs

Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2017-07, Vol.33 (3), p.819-824
Hauptverfasser: Bu, Yue-hua, Zhang, Shui-ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 3
container_start_page 819
container_title Acta Mathematicae Applicatae Sinica
container_volume 33
creator Bu, Yue-hua
Zhang, Shui-ming
description Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.
doi_str_mv 10.1007/s10255-017-0700-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927994855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672625859</cqvip_id><sourcerecordid>1927994855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b5c0f5098ace6203a6a4334ca921e79713337c85c446d8c5450b83b4ce8d836f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqXwA9gimA2v_cZfI1RQkCrBUGbLcZ1-EOLUbgf-PalSISamW-650x0h1wzuGIC6zwy4EBSYoqAAKJ6QEZNMUzTIT8kImNTUSIXn5CLnDfRGlGpE2KPzn1VsQzGJTUzrdlnUMRXztHbtsgm0TiEU741rXSqmyXWrfEnOatfkcHXUMfl4fppPXujsbfo6eZhRz43Y0Up4qAUY7XyQHNBJVyKW3hnOgjKKIaLyWviylAvtRSmg0liVPuiFRlnjmNwOuV2K233IO7uJ-9T2lZYZrowptRC9iw0un2LOKdS2S-svl74tA3t4xg7P2H6wPTxjsWf4wOTuMDikP8n_QDfHolVsl9ue-22SiksutDD4A6ZGbwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927994855</pqid></control><display><type>article</type><title>Backbone Coloring for Triangle-free Planar Graphs</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Bu, Yue-hua ; Zhang, Shui-ming</creator><creatorcontrib>Bu, Yue-hua ; Zhang, Shui-ming</creatorcontrib><description>Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-017-0700-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Backbone ; Coloring ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical ; 三角形 ; 主干 ; 子图 ; 平面图 ; 映射 ; 着色 ; 连通图</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2017-07, Vol.33 (3), p.819-824</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-b5c0f5098ace6203a6a4334ca921e79713337c85c446d8c5450b83b4ce8d836f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-017-0700-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-017-0700-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bu, Yue-hua</creatorcontrib><creatorcontrib>Zhang, Shui-ming</creatorcontrib><title>Backbone Coloring for Triangle-free Planar Graphs</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.</description><subject>Applications of Mathematics</subject><subject>Backbone</subject><subject>Coloring</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><subject>三角形</subject><subject>主干</subject><subject>子图</subject><subject>平面图</subject><subject>映射</subject><subject>着色</subject><subject>连通图</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAYhC0EEqXwA9gimA2v_cZfI1RQkCrBUGbLcZ1-EOLUbgf-PalSISamW-650x0h1wzuGIC6zwy4EBSYoqAAKJ6QEZNMUzTIT8kImNTUSIXn5CLnDfRGlGpE2KPzn1VsQzGJTUzrdlnUMRXztHbtsgm0TiEU741rXSqmyXWrfEnOatfkcHXUMfl4fppPXujsbfo6eZhRz43Y0Up4qAUY7XyQHNBJVyKW3hnOgjKKIaLyWviylAvtRSmg0liVPuiFRlnjmNwOuV2K233IO7uJ-9T2lZYZrowptRC9iw0un2LOKdS2S-svl74tA3t4xg7P2H6wPTxjsWf4wOTuMDikP8n_QDfHolVsl9ue-22SiksutDD4A6ZGbwQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bu, Yue-hua</creator><creator>Zhang, Shui-ming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Backbone Coloring for Triangle-free Planar Graphs</title><author>Bu, Yue-hua ; Zhang, Shui-ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b5c0f5098ace6203a6a4334ca921e79713337c85c446d8c5450b83b4ce8d836f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Backbone</topic><topic>Coloring</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><topic>三角形</topic><topic>主干</topic><topic>子图</topic><topic>平面图</topic><topic>映射</topic><topic>着色</topic><topic>连通图</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Yue-hua</creatorcontrib><creatorcontrib>Zhang, Shui-ming</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Yue-hua</au><au>Zhang, Shui-ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backbone Coloring for Triangle-free Planar Graphs</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>33</volume><issue>3</issue><spage>819</spage><epage>824</epage><pages>819-824</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-017-0700-3</doi><tpages>6</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2017-07, Vol.33 (3), p.819-824
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_1927994855
source SpringerLink Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Backbone
Coloring
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
三角形
主干
子图
平面图
映射
着色
连通图
title Backbone Coloring for Triangle-free Planar Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backbone%20Coloring%20for%20Triangle-free%20Planar%20Graphs&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Bu,%20Yue-hua&rft.date=2017-07-01&rft.volume=33&rft.issue=3&rft.spage=819&rft.epage=824&rft.pages=819-824&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-017-0700-3&rft_dat=%3Cproquest_cross%3E1927994855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927994855&rft_id=info:pmid/&rft_cqvip_id=672625859&rfr_iscdi=true