Backbone Coloring for Triangle-free Planar Graphs
Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backb...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2017-07, Vol.33 (3), p.819-824 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-017-0700-3 |