Exploiting Antenna Motion for Faster Initialization of Centimeter-Accurate GNSS Positioning With Low-Cost Antennas

This paper investigates the effectiveness of multipath-decorrelating antenna motion in reducing the initialization time of global navigation satellite system (GNSS) receivers employing low-cost single-frequency antennas for carrier-phase differential GNSS (CDGNSS) positioning. Fast initialization ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2017-08, Vol.53 (4), p.1597-1613
Hauptverfasser: Pesyna, Kenneth M., Humphreys, Todd E., Heath, Robert W., Novlan, Thomas D., Zhang, Jianzhong Charlie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the effectiveness of multipath-decorrelating antenna motion in reducing the initialization time of global navigation satellite system (GNSS) receivers employing low-cost single-frequency antennas for carrier-phase differential GNSS (CDGNSS) positioning. Fast initialization times with low-cost antennas will encourage the expansion of CDGNSS into the mass market, bringing the benefits of globally referenced centimeter-accurate positioning to many consumer applications, such as augmented reality and autonomous vehicles, that have so far been hampered by the several-meter-level errors of traditional GNSS positioning. Poor multipath suppression common to low-cost antennas results in large and strongly time-correlated phase errors when a receiver is static. Such errors can result in the CDGNSS initialization time, the so-called time to ambiguity resolution (TAR), extending to hundreds of seconds-many times longer than for higher cost survey-grade antennas, which have substantially better multipath suppression. This paper demonstrates that TAR can be significantly reduced through antenna motion, particularly gentle wavelength-scale random antenna motion. Such motion acts to decrease the correlation time of the multipath-induced phase errors. A priori knowledge of the motion profile is shown to further reduce TAR, with the reduction shown to be more pronounced as the initialization scenario is more challenging.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2017.2665221