Interannual Variability of the Intraseasonal Oscillation and Its Impact on the Summertime Wave Patterns and Tropical Cyclones over the Western North Pacific
In this study, intraseasonal oscillations (ISOs) and submonthly wave patterns were separated into maximal variance (MaxV) and minimal variance (MinV) years on the basis of ISO variance from July to October. The mean-state 850-hPa streamfunction for submonthly cases indicated that, in the MinV years,...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2017-09, Vol.145 (9), p.3465 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, intraseasonal oscillations (ISOs) and submonthly wave patterns were separated into maximal variance (MaxV) and minimal variance (MinV) years on the basis of ISO variance from July to October. The mean-state 850-hPa streamfunction for submonthly cases indicated that, in the MinV years, tropical cyclones (TCs) formed near areas southeast of those in the MaxV years. ISOs propagated northward in the MaxV years, whereas a weaker westward-propagating tendency was observed in the MinV years. Track analysis of the centers of the submonthly cyclonic anomalies suggested that the background flow dictated the propagation routes of the easterly cyclonic anomalies in the MaxV years. However, the propagation routes of the westerly cyclonic anomalies were barely affected by the background flow. Further analysis of the ISO mean flow patterns showed that in the MaxV years, the propagation routes of the westerly cyclonic anomalies were more likely controlled by the anomalous easterly flow generated by the ISO westerly cyclonic anomalies. Moreover, rainfall was heavier in Taiwan in the MaxV years because the background flow in the MinV years caused the submonthly cyclonic anomaly tracks to shift away from Taiwan. Therefore, low-frequency large-scale circulations can affect smaller-scale phenomena and local weather. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/MWR-D-16-0482.1"> |