Inverse closedness and localization in extended Gevrey regularity

We consider classes E τ , σ ( U ) of ultradifferentiable functions which are extension of Gevrey classes, and prove that such classes are inverse closed. This result is used to construct an element from E τ , σ ( U ) which is not a Gevrey regular function. Furthermore, we show that the singular supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2017-09, Vol.8 (3), p.411-421
Hauptverfasser: Teofanov, Nenad, Tomić, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider classes E τ , σ ( U ) of ultradifferentiable functions which are extension of Gevrey classes, and prove that such classes are inverse closed. This result is used to construct an element from E τ , σ ( U ) which is not a Gevrey regular function. Furthermore, we show that the singular support of a distribution u ∈ D ′ ( U ) related to local regularity in E τ , σ ( U ) coincides with the standard projection of the corresponding wave front set WF τ , σ ( u ) .
ISSN:1662-9981
1662-999X
DOI:10.1007/s11868-017-0205-0