Inverse closedness and localization in extended Gevrey regularity
We consider classes E τ , σ ( U ) of ultradifferentiable functions which are extension of Gevrey classes, and prove that such classes are inverse closed. This result is used to construct an element from E τ , σ ( U ) which is not a Gevrey regular function. Furthermore, we show that the singular supp...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2017-09, Vol.8 (3), p.411-421 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider classes
E
τ
,
σ
(
U
)
of ultradifferentiable functions which are extension of Gevrey classes, and prove that such classes are inverse closed. This result is used to construct an element from
E
τ
,
σ
(
U
)
which is not a Gevrey regular function. Furthermore, we show that the singular support of a distribution
u
∈
D
′
(
U
)
related to local regularity in
E
τ
,
σ
(
U
)
coincides with the standard projection of the corresponding wave front set
WF
τ
,
σ
(
u
)
. |
---|---|
ISSN: | 1662-9981 1662-999X |
DOI: | 10.1007/s11868-017-0205-0 |