Progress in three-dimensional bioprinting

Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2017-08, Vol.42 (8), p.557-562
Hauptverfasser: Feinberg, Adam W., Miller, Jordan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 8
container_start_page 557
container_title MRS bulletin
container_volume 42
creator Feinberg, Adam W.
Miller, Jordan S.
description Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.
doi_str_mv 10.1557/mrs.2017.166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927415033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2017_166</cupid><sourcerecordid>1927415033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWw8QMiMSHh4OfPeEQVBaRKMMBsObETXDVJsdOBf0-idGBAYnrLeVf3HoSugeQghLpvY8opAZWDlCdoAZoVGDgVp2hBioJhJTU_RxcpbQkBQZRYoNu32DfRp5SFLhs-o_fYhdZ3KfSd3WVl6PcxdEPomkt0Vttd8lfHu0Qf68f31TPevD69rB42uBJAB1wzzbVVWgEoUVkpiCtKZ5mURLGydLKgApSXNeNVaRWva-2olEI6TpUCxpboZs7dx_7r4NNgtv0hjmWSAU0VH4uzibqbqSr2KUVfm7Fna-O3AWImGWaUYSYZZpQx4njG0zSn8fFX6N98foy3bRmDa_w_Dz8o1G7t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927415033</pqid></control><display><type>article</type><title>Progress in three-dimensional bioprinting</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Feinberg, Adam W. ; Miller, Jordan S.</creator><creatorcontrib>Feinberg, Adam W. ; Miller, Jordan S.</creatorcontrib><description>Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2017.166</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>3-D printers ; 3D Bioprinting of Organs ; Advantages ; Applied and Technical Physics ; Bioengineering ; Biomedical materials ; Cells (biology) ; Characterization and Evaluation of Materials ; Consumers ; Customization ; Design ; Design engineering ; Economies of scale ; Energy Materials ; Engineering ; FDA approval ; Gels ; Mass production ; Materials Engineering ; Materials Science ; Medical device industry ; Medical devices ; Medical equipment ; Medical imaging ; Nanotechnology ; NMR ; Nuclear magnetic resonance ; Organs ; R&amp;D ; Research &amp; development ; Three dimensional imaging ; Three dimensional printing ; Tomography</subject><ispartof>MRS bulletin, 2017-08, Vol.42 (8), p.557-562</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</citedby><cites>FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2017.166$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088376941700166X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Feinberg, Adam W.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><title>Progress in three-dimensional bioprinting</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.</description><subject>3-D printers</subject><subject>3D Bioprinting of Organs</subject><subject>Advantages</subject><subject>Applied and Technical Physics</subject><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>Cells (biology)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Consumers</subject><subject>Customization</subject><subject>Design</subject><subject>Design engineering</subject><subject>Economies of scale</subject><subject>Energy Materials</subject><subject>Engineering</subject><subject>FDA approval</subject><subject>Gels</subject><subject>Mass production</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Medical device industry</subject><subject>Medical devices</subject><subject>Medical equipment</subject><subject>Medical imaging</subject><subject>Nanotechnology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organs</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Three dimensional imaging</subject><subject>Three dimensional printing</subject><subject>Tomography</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkD1PwzAURS0EEqWw8QMiMSHh4OfPeEQVBaRKMMBsObETXDVJsdOBf0-idGBAYnrLeVf3HoSugeQghLpvY8opAZWDlCdoAZoVGDgVp2hBioJhJTU_RxcpbQkBQZRYoNu32DfRp5SFLhs-o_fYhdZ3KfSd3WVl6PcxdEPomkt0Vttd8lfHu0Qf68f31TPevD69rB42uBJAB1wzzbVVWgEoUVkpiCtKZ5mURLGydLKgApSXNeNVaRWva-2olEI6TpUCxpboZs7dx_7r4NNgtv0hjmWSAU0VH4uzibqbqSr2KUVfm7Fna-O3AWImGWaUYSYZZpQx4njG0zSn8fFX6N98foy3bRmDa_w_Dz8o1G7t</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Feinberg, Adam W.</creator><creator>Miller, Jordan S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20170801</creationdate><title>Progress in three-dimensional bioprinting</title><author>Feinberg, Adam W. ; Miller, Jordan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-D printers</topic><topic>3D Bioprinting of Organs</topic><topic>Advantages</topic><topic>Applied and Technical Physics</topic><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>Cells (biology)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Consumers</topic><topic>Customization</topic><topic>Design</topic><topic>Design engineering</topic><topic>Economies of scale</topic><topic>Energy Materials</topic><topic>Engineering</topic><topic>FDA approval</topic><topic>Gels</topic><topic>Mass production</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Medical device industry</topic><topic>Medical devices</topic><topic>Medical equipment</topic><topic>Medical imaging</topic><topic>Nanotechnology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organs</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Three dimensional imaging</topic><topic>Three dimensional printing</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinberg, Adam W.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinberg, Adam W.</au><au>Miller, Jordan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress in three-dimensional bioprinting</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>42</volume><issue>8</issue><spage>557</spage><epage>562</epage><pages>557-562</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2017.166</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2017-08, Vol.42 (8), p.557-562
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_journals_1927415033
source SpringerNature Journals; Cambridge University Press Journals Complete
subjects 3-D printers
3D Bioprinting of Organs
Advantages
Applied and Technical Physics
Bioengineering
Biomedical materials
Cells (biology)
Characterization and Evaluation of Materials
Consumers
Customization
Design
Design engineering
Economies of scale
Energy Materials
Engineering
FDA approval
Gels
Mass production
Materials Engineering
Materials Science
Medical device industry
Medical devices
Medical equipment
Medical imaging
Nanotechnology
NMR
Nuclear magnetic resonance
Organs
R&D
Research & development
Three dimensional imaging
Three dimensional printing
Tomography
title Progress in three-dimensional bioprinting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20in%20three-dimensional%20bioprinting&rft.jtitle=MRS%20bulletin&rft.au=Feinberg,%20Adam%20W.&rft.date=2017-08-01&rft.volume=42&rft.issue=8&rft.spage=557&rft.epage=562&rft.pages=557-562&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2017.166&rft_dat=%3Cproquest_cross%3E1927415033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927415033&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2017_166&rfr_iscdi=true