Progress in three-dimensional bioprinting
Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in term...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2017-08, Vol.42 (8), p.557-562 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 562 |
---|---|
container_issue | 8 |
container_start_page | 557 |
container_title | MRS bulletin |
container_volume | 42 |
creator | Feinberg, Adam W. Miller, Jordan S. |
description | Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs. |
doi_str_mv | 10.1557/mrs.2017.166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927415033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2017_166</cupid><sourcerecordid>1927415033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWw8QMiMSHh4OfPeEQVBaRKMMBsObETXDVJsdOBf0-idGBAYnrLeVf3HoSugeQghLpvY8opAZWDlCdoAZoVGDgVp2hBioJhJTU_RxcpbQkBQZRYoNu32DfRp5SFLhs-o_fYhdZ3KfSd3WVl6PcxdEPomkt0Vttd8lfHu0Qf68f31TPevD69rB42uBJAB1wzzbVVWgEoUVkpiCtKZ5mURLGydLKgApSXNeNVaRWva-2olEI6TpUCxpboZs7dx_7r4NNgtv0hjmWSAU0VH4uzibqbqSr2KUVfm7Fna-O3AWImGWaUYSYZZpQx4njG0zSn8fFX6N98foy3bRmDa_w_Dz8o1G7t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927415033</pqid></control><display><type>article</type><title>Progress in three-dimensional bioprinting</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Feinberg, Adam W. ; Miller, Jordan S.</creator><creatorcontrib>Feinberg, Adam W. ; Miller, Jordan S.</creatorcontrib><description>Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2017.166</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>3-D printers ; 3D Bioprinting of Organs ; Advantages ; Applied and Technical Physics ; Bioengineering ; Biomedical materials ; Cells (biology) ; Characterization and Evaluation of Materials ; Consumers ; Customization ; Design ; Design engineering ; Economies of scale ; Energy Materials ; Engineering ; FDA approval ; Gels ; Mass production ; Materials Engineering ; Materials Science ; Medical device industry ; Medical devices ; Medical equipment ; Medical imaging ; Nanotechnology ; NMR ; Nuclear magnetic resonance ; Organs ; R&D ; Research & development ; Three dimensional imaging ; Three dimensional printing ; Tomography</subject><ispartof>MRS bulletin, 2017-08, Vol.42 (8), p.557-562</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</citedby><cites>FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2017.166$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088376941700166X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Feinberg, Adam W.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><title>Progress in three-dimensional bioprinting</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.</description><subject>3-D printers</subject><subject>3D Bioprinting of Organs</subject><subject>Advantages</subject><subject>Applied and Technical Physics</subject><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>Cells (biology)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Consumers</subject><subject>Customization</subject><subject>Design</subject><subject>Design engineering</subject><subject>Economies of scale</subject><subject>Energy Materials</subject><subject>Engineering</subject><subject>FDA approval</subject><subject>Gels</subject><subject>Mass production</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Medical device industry</subject><subject>Medical devices</subject><subject>Medical equipment</subject><subject>Medical imaging</subject><subject>Nanotechnology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organs</subject><subject>R&D</subject><subject>Research & development</subject><subject>Three dimensional imaging</subject><subject>Three dimensional printing</subject><subject>Tomography</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkD1PwzAURS0EEqWw8QMiMSHh4OfPeEQVBaRKMMBsObETXDVJsdOBf0-idGBAYnrLeVf3HoSugeQghLpvY8opAZWDlCdoAZoVGDgVp2hBioJhJTU_RxcpbQkBQZRYoNu32DfRp5SFLhs-o_fYhdZ3KfSd3WVl6PcxdEPomkt0Vttd8lfHu0Qf68f31TPevD69rB42uBJAB1wzzbVVWgEoUVkpiCtKZ5mURLGydLKgApSXNeNVaRWva-2olEI6TpUCxpboZs7dx_7r4NNgtv0hjmWSAU0VH4uzibqbqSr2KUVfm7Fna-O3AWImGWaUYSYZZpQx4njG0zSn8fFX6N98foy3bRmDa_w_Dz8o1G7t</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Feinberg, Adam W.</creator><creator>Miller, Jordan S.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20170801</creationdate><title>Progress in three-dimensional bioprinting</title><author>Feinberg, Adam W. ; Miller, Jordan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-f3949a7971175ca650d8bda366073bbd682517e6f34cba74ff9d26656d4277133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-D printers</topic><topic>3D Bioprinting of Organs</topic><topic>Advantages</topic><topic>Applied and Technical Physics</topic><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>Cells (biology)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Consumers</topic><topic>Customization</topic><topic>Design</topic><topic>Design engineering</topic><topic>Economies of scale</topic><topic>Energy Materials</topic><topic>Engineering</topic><topic>FDA approval</topic><topic>Gels</topic><topic>Mass production</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Medical device industry</topic><topic>Medical devices</topic><topic>Medical equipment</topic><topic>Medical imaging</topic><topic>Nanotechnology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organs</topic><topic>R&D</topic><topic>Research & development</topic><topic>Three dimensional imaging</topic><topic>Three dimensional printing</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinberg, Adam W.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinberg, Adam W.</au><au>Miller, Jordan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress in three-dimensional bioprinting</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>42</volume><issue>8</issue><spage>557</spage><epage>562</epage><pages>557-562</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2017.166</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2017-08, Vol.42 (8), p.557-562 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_journals_1927415033 |
source | SpringerNature Journals; Cambridge University Press Journals Complete |
subjects | 3-D printers 3D Bioprinting of Organs Advantages Applied and Technical Physics Bioengineering Biomedical materials Cells (biology) Characterization and Evaluation of Materials Consumers Customization Design Design engineering Economies of scale Energy Materials Engineering FDA approval Gels Mass production Materials Engineering Materials Science Medical device industry Medical devices Medical equipment Medical imaging Nanotechnology NMR Nuclear magnetic resonance Organs R&D Research & development Three dimensional imaging Three dimensional printing Tomography |
title | Progress in three-dimensional bioprinting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20in%20three-dimensional%20bioprinting&rft.jtitle=MRS%20bulletin&rft.au=Feinberg,%20Adam%20W.&rft.date=2017-08-01&rft.volume=42&rft.issue=8&rft.spage=557&rft.epage=562&rft.pages=557-562&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2017.166&rft_dat=%3Cproquest_cross%3E1927415033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927415033&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2017_166&rfr_iscdi=true |