Progress in three-dimensional bioprinting

Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2017-08, Vol.42 (8), p.557-562
Hauptverfasser: Feinberg, Adam W., Miller, Jordan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manufacturing has historically followed a mass production approach due to economies of scale and the engineering challenges of large-scale customization, leading to a one-size-fits-all paradigm. This manufacturing-centric approach has forced consumers and patients to adapt to medical devices in terms of anatomical fit and biological performance, often significantly decreasing their quality of life. In order to improve the biological interface with the human body, the materials science and bioengineering communities are rapidly adopting three-dimensional (3D) printing, which promises high precision, automation, and a customized fit. However, numerous design and engineering constraints, many posed by the fragile nature of living cells and soft gels, suggest exciting opportunities for further research in materials synthesis, characterization, and integration. Specifically, materials innovations in bioinks and support materials, coupled with improved 3D bioprinting processes for multiple materials, have the potential to empower the next generation of biology by enabling precision engineered tissues, organoids, and eventually whole organs.
ISSN:0883-7694
1938-1425
DOI:10.1557/mrs.2017.166