Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space
We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we p...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-09, Vol.225 (5), p.805-811 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 811 |
---|---|
container_issue | 5 |
container_start_page | 805 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 225 |
creator | Rusakov, O. V. |
description | We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process. |
doi_str_mv | 10.1007/s10958-017-3496-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1927219279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A525185261</galeid><sourcerecordid>A525185261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNXHarV7DOmXIVBTp2chS7NrJWvJ1exC4l9fuS60BpeBGSGeZwTiraq3nF1xxvQH5KxTLWVcU1l3Dd0_qy640pK2ulPPy5lpQaXU9cvqFeI9K07TyotqcxeGzRQBkaSerObt77mIHnZQWpzI4tCDs-P4RD4GnHJYzxN4skSYfaLLFBBTJMucXNkCSEIk0wbI6iHl9LBJnqx21sHr6kVvR4Q3f-Zl9ePzp7ubr_T225fFzfUtdVKzPa29Vp7XwHgPLV9Lr3rmRaPWjZJaqHrdsFKNFbZzlnesF8ozW3MnZcfrVsnL6t1x7y6nnzPgZO7TnGN50vBOaHFo3V9qsCOYEPs0Zeu2AZ25VkLxVomGF4qeoQaIkO2YIvShXJ_wV2f4Uh62wZ0V3p8IhZngcRrsjGgWq--nLD-yLifEDL3Z5bC1-clwZg4ZMMcMmJIBc8iA2RdHHB0sbBwg__MZ_5V-Abiwsco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927219279</pqid></control><display><type>article</type><title>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</title><source>SpringerNature Complete Journals</source><creator>Rusakov, O. V.</creator><creatorcontrib>Rusakov, O. V.</creatorcontrib><description>We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-017-3496-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Poisson density functions ; Queuing theory ; Random variables ; Sums ; Tightness</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2017-09, Vol.225 (5), p.805-811</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</citedby><cites>FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-017-3496-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-017-3496-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rusakov, O. V.</creatorcontrib><title>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Poisson density functions</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Sums</subject><subject>Tightness</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNXHarV7DOmXIVBTp2chS7NrJWvJ1exC4l9fuS60BpeBGSGeZwTiraq3nF1xxvQH5KxTLWVcU1l3Dd0_qy640pK2ulPPy5lpQaXU9cvqFeI9K07TyotqcxeGzRQBkaSerObt77mIHnZQWpzI4tCDs-P4RD4GnHJYzxN4skSYfaLLFBBTJMucXNkCSEIk0wbI6iHl9LBJnqx21sHr6kVvR4Q3f-Zl9ePzp7ubr_T225fFzfUtdVKzPa29Vp7XwHgPLV9Lr3rmRaPWjZJaqHrdsFKNFbZzlnesF8ozW3MnZcfrVsnL6t1x7y6nnzPgZO7TnGN50vBOaHFo3V9qsCOYEPs0Zeu2AZ25VkLxVomGF4qeoQaIkO2YIvShXJ_wV2f4Uh62wZ0V3p8IhZngcRrsjGgWq--nLD-yLifEDL3Z5bC1-clwZg4ZMMcMmJIBc8iA2RdHHB0sbBwg__MZ_5V-Abiwsco</recordid><startdate>20170904</startdate><enddate>20170904</enddate><creator>Rusakov, O. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170904</creationdate><title>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</title><author>Rusakov, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Poisson density functions</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Sums</topic><topic>Tightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusakov, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusakov, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2017-09-04</date><risdate>2017</risdate><volume>225</volume><issue>5</issue><spage>805</spage><epage>811</epage><pages>805-811</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-017-3496-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2017-09, Vol.225 (5), p.805-811 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_1927219279 |
source | SpringerNature Complete Journals |
subjects | Mathematics Mathematics and Statistics Poisson density functions Queuing theory Random variables Sums Tightness |
title | Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tightness%20of%20Sums%20of%20Independent%20Identically%20Distributed%20Pseudo-Poisson%20Processes%20in%20the%20Skorokhod%20Space&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Rusakov,%20O.%20V.&rft.date=2017-09-04&rft.volume=225&rft.issue=5&rft.spage=805&rft.epage=811&rft.pages=805-811&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-017-3496-z&rft_dat=%3Cgale_proqu%3EA525185261%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927219279&rft_id=info:pmid/&rft_galeid=A525185261&rfr_iscdi=true |