Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space

We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-09, Vol.225 (5), p.805-811
1. Verfasser: Rusakov, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 811
container_issue 5
container_start_page 805
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 225
creator Rusakov, O. V.
description We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.
doi_str_mv 10.1007/s10958-017-3496-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1927219279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A525185261</galeid><sourcerecordid>A525185261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNXHarV7DOmXIVBTp2chS7NrJWvJ1exC4l9fuS60BpeBGSGeZwTiraq3nF1xxvQH5KxTLWVcU1l3Dd0_qy640pK2ulPPy5lpQaXU9cvqFeI9K07TyotqcxeGzRQBkaSerObt77mIHnZQWpzI4tCDs-P4RD4GnHJYzxN4skSYfaLLFBBTJMucXNkCSEIk0wbI6iHl9LBJnqx21sHr6kVvR4Q3f-Zl9ePzp7ubr_T225fFzfUtdVKzPa29Vp7XwHgPLV9Lr3rmRaPWjZJaqHrdsFKNFbZzlnesF8ozW3MnZcfrVsnL6t1x7y6nnzPgZO7TnGN50vBOaHFo3V9qsCOYEPs0Zeu2AZ25VkLxVomGF4qeoQaIkO2YIvShXJ_wV2f4Uh62wZ0V3p8IhZngcRrsjGgWq--nLD-yLifEDL3Z5bC1-clwZg4ZMMcMmJIBc8iA2RdHHB0sbBwg__MZ_5V-Abiwsco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927219279</pqid></control><display><type>article</type><title>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</title><source>SpringerNature Complete Journals</source><creator>Rusakov, O. V.</creator><creatorcontrib>Rusakov, O. V.</creatorcontrib><description>We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-017-3496-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Poisson density functions ; Queuing theory ; Random variables ; Sums ; Tightness</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2017-09, Vol.225 (5), p.805-811</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</citedby><cites>FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-017-3496-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-017-3496-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rusakov, O. V.</creatorcontrib><title>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Poisson density functions</subject><subject>Queuing theory</subject><subject>Random variables</subject><subject>Sums</subject><subject>Tightness</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNXHarV7DOmXIVBTp2chS7NrJWvJ1exC4l9fuS60BpeBGSGeZwTiraq3nF1xxvQH5KxTLWVcU1l3Dd0_qy640pK2ulPPy5lpQaXU9cvqFeI9K07TyotqcxeGzRQBkaSerObt77mIHnZQWpzI4tCDs-P4RD4GnHJYzxN4skSYfaLLFBBTJMucXNkCSEIk0wbI6iHl9LBJnqx21sHr6kVvR4Q3f-Zl9ePzp7ubr_T225fFzfUtdVKzPa29Vp7XwHgPLV9Lr3rmRaPWjZJaqHrdsFKNFbZzlnesF8ozW3MnZcfrVsnL6t1x7y6nnzPgZO7TnGN50vBOaHFo3V9qsCOYEPs0Zeu2AZ25VkLxVomGF4qeoQaIkO2YIvShXJ_wV2f4Uh62wZ0V3p8IhZngcRrsjGgWq--nLD-yLifEDL3Z5bC1-clwZg4ZMMcMmJIBc8iA2RdHHB0sbBwg__MZ_5V-Abiwsco</recordid><startdate>20170904</startdate><enddate>20170904</enddate><creator>Rusakov, O. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170904</creationdate><title>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</title><author>Rusakov, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370z-4d75d14e01fe81b3d5f0d265b6537254b606066a2a9ca190f25d0a41c33914853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Poisson density functions</topic><topic>Queuing theory</topic><topic>Random variables</topic><topic>Sums</topic><topic>Tightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusakov, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusakov, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2017-09-04</date><risdate>2017</risdate><volume>225</volume><issue>5</issue><spage>805</spage><epage>811</epage><pages>805-811</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-017-3496-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2017-09, Vol.225 (5), p.805-811
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_1927219279
source SpringerNature Complete Journals
subjects Mathematics
Mathematics and Statistics
Poisson density functions
Queuing theory
Random variables
Sums
Tightness
title Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tightness%20of%20Sums%20of%20Independent%20Identically%20Distributed%20Pseudo-Poisson%20Processes%20in%20the%20Skorokhod%20Space&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Rusakov,%20O.%20V.&rft.date=2017-09-04&rft.volume=225&rft.issue=5&rft.spage=805&rft.epage=811&rft.pages=805-811&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-017-3496-z&rft_dat=%3Cgale_proqu%3EA525185261%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927219279&rft_id=info:pmid/&rft_galeid=A525185261&rfr_iscdi=true