Tightness of Sums of Independent Identically Distributed Pseudo-Poisson Processes in the Skorokhod Space
We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we p...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-09, Vol.225 (5), p.805-811 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a pseudo-Poisson process of the following simple type. This process is a Poissonian subordinator for a sequence of i.i.d. random variables with finite variance. Further we consider sums of i.i.d. copies of a pseudo-Poisson process. For a family of distributions of these random sums, we prove the tightness (relative compactness) in the Skorokhod space. Under the conditions of the Central Limit Theorem for vectors, we establish the weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-017-3496-z |