Generalized functions and Laguerre expansions
In this paper we study and characterize expansions of distributions in the Zemanian spaces, H μ and its dual H μ ′ ( μ ≥ - 1 2 ) with respect to Laguerre functions. We obtain as applications of this result, the kernel Theorem and a structure Theorem for H μ ′ . We also introduce a new algebra of gen...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2017-09, Vol.184 (1), p.51-75 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study and characterize expansions of distributions in the Zemanian spaces,
H
μ
and its dual
H
μ
′
(
μ
≥
-
1
2
) with respect to Laguerre functions. We obtain as applications of this result, the kernel Theorem and a structure Theorem for
H
μ
′
. We also introduce a new algebra of generalized functions in the sense of J. F. Colombeau such that it satisfies interesting properties involving the Hankel transformation and Hankel convolution. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-017-1045-y |