Generalized functions and Laguerre expansions

In this paper we study and characterize expansions of distributions in the Zemanian spaces, H μ and its dual H μ ′ ( μ ≥ - 1 2 ) with respect to Laguerre functions. We obtain as applications of this result, the kernel Theorem and a structure Theorem for H μ ′ . We also introduce a new algebra of gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2017-09, Vol.184 (1), p.51-75
Hauptverfasser: Catuogno, Pedro, Molina, Sandra, Olivera, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study and characterize expansions of distributions in the Zemanian spaces, H μ and its dual H μ ′ ( μ ≥ - 1 2 ) with respect to Laguerre functions. We obtain as applications of this result, the kernel Theorem and a structure Theorem for H μ ′ . We also introduce a new algebra of generalized functions in the sense of J. F. Colombeau such that it satisfies interesting properties involving the Hankel transformation and Hankel convolution.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-017-1045-y