An inverse source problem for a two-parameter anomalous diffusion with local time datum

We determine the space-dependent source term for a two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint boundary conditions and two local time-distinct datum. A bi-orthogonal pair of bases is used to construct a series representation of the solution and the source term. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2017-03, Vol.73 (6), p.1008-1015
Hauptverfasser: Furati, Khaled M., Iyiola, Olaniyi S., Mustapha, Kassem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 6
container_start_page 1008
container_title Computers & mathematics with applications (1987)
container_volume 73
creator Furati, Khaled M.
Iyiola, Olaniyi S.
Mustapha, Kassem
description We determine the space-dependent source term for a two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint boundary conditions and two local time-distinct datum. A bi-orthogonal pair of bases is used to construct a series representation of the solution and the source term. The two local time conditions spare us from measuring the fractional integral initial conditions commonly associated with fractional derivatives. On the other hand, they lead to delicate 2×2 linear systems for the Fourier coefficients of the source term and of the fractional integral of the solution at t=0. The asymptotic behavior and estimates of the generalized Mittag-Leffler function are used to establish the solvability of these linear systems, and to obtain sufficient conditions for the existence of our construction. Analytical and numerical examples are provided.
doi_str_mv 10.1016/j.camwa.2016.06.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927133493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122116303686</els_id><sourcerecordid>1927133493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-fd44bb13395e434a8b9a633e7fe1eb6a961bc543b1ec4ed992daa3c0857dd2443</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoLvAQ8tyZNNm0OHpbFL1jwongMafKKKW2zJuku_nuj61l48BiYmfdmELqmpKSEitu-NHo86LLKoCR5mDhBC9rUrKiFaE7RgjSyKWhV0XN0EWNPCOGsIgv0vp6wm_YQIuDo52AA74JvBxhx5wPWOB18sdNBj5Ag48mPevBzxNZ13Rydn_DBpQ88eKMHnNwI2Oo0j5forNNDhKu_vURvD_evm6di-_L4vFlvC8NqkYrOct62lDG5As64blqpBWNQd0ChFVoK2poVZy0Fw8FKWVmtmSHNqra24pwt0c3RN3_9OUNMqs8ppnxSUVnV2ZlLllnsyDLBxxigU7vgRh2-FCXqp0HVq98G1U-DiuRhIqvujirIAfYOgorGwWTAugAmKevdv_pv6xF7sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927133493</pqid></control><display><type>article</type><title>An inverse source problem for a two-parameter anomalous diffusion with local time datum</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Furati, Khaled M. ; Iyiola, Olaniyi S. ; Mustapha, Kassem</creator><creatorcontrib>Furati, Khaled M. ; Iyiola, Olaniyi S. ; Mustapha, Kassem</creatorcontrib><description>We determine the space-dependent source term for a two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint boundary conditions and two local time-distinct datum. A bi-orthogonal pair of bases is used to construct a series representation of the solution and the source term. The two local time conditions spare us from measuring the fractional integral initial conditions commonly associated with fractional derivatives. On the other hand, they lead to delicate 2×2 linear systems for the Fourier coefficients of the source term and of the fractional integral of the solution at t=0. The asymptotic behavior and estimates of the generalized Mittag-Leffler function are used to establish the solvability of these linear systems, and to obtain sufficient conditions for the existence of our construction. Analytical and numerical examples are provided.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2016.06.036</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Asymptotic methods ; Boundary conditions ; Differential equations ; Fourier analysis ; Fractional diffusion ; Hilfer derivative ; Initial conditions ; Integrals ; Inverse source problem ; Linear systems ; Mittag-Leffler function ; Studies</subject><ispartof>Computers &amp; mathematics with applications (1987), 2017-03, Vol.73 (6), p.1008-1015</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-fd44bb13395e434a8b9a633e7fe1eb6a961bc543b1ec4ed992daa3c0857dd2443</citedby><cites>FETCH-LOGICAL-c376t-fd44bb13395e434a8b9a633e7fe1eb6a961bc543b1ec4ed992daa3c0857dd2443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122116303686$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Furati, Khaled M.</creatorcontrib><creatorcontrib>Iyiola, Olaniyi S.</creatorcontrib><creatorcontrib>Mustapha, Kassem</creatorcontrib><title>An inverse source problem for a two-parameter anomalous diffusion with local time datum</title><title>Computers &amp; mathematics with applications (1987)</title><description>We determine the space-dependent source term for a two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint boundary conditions and two local time-distinct datum. A bi-orthogonal pair of bases is used to construct a series representation of the solution and the source term. The two local time conditions spare us from measuring the fractional integral initial conditions commonly associated with fractional derivatives. On the other hand, they lead to delicate 2×2 linear systems for the Fourier coefficients of the source term and of the fractional integral of the solution at t=0. The asymptotic behavior and estimates of the generalized Mittag-Leffler function are used to establish the solvability of these linear systems, and to obtain sufficient conditions for the existence of our construction. Analytical and numerical examples are provided.</description><subject>Asymptotic methods</subject><subject>Boundary conditions</subject><subject>Differential equations</subject><subject>Fourier analysis</subject><subject>Fractional diffusion</subject><subject>Hilfer derivative</subject><subject>Initial conditions</subject><subject>Integrals</subject><subject>Inverse source problem</subject><subject>Linear systems</subject><subject>Mittag-Leffler function</subject><subject>Studies</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoLvAQ8tyZNNm0OHpbFL1jwongMafKKKW2zJuku_nuj61l48BiYmfdmELqmpKSEitu-NHo86LLKoCR5mDhBC9rUrKiFaE7RgjSyKWhV0XN0EWNPCOGsIgv0vp6wm_YQIuDo52AA74JvBxhx5wPWOB18sdNBj5Ag48mPevBzxNZ13Rydn_DBpQ88eKMHnNwI2Oo0j5forNNDhKu_vURvD_evm6di-_L4vFlvC8NqkYrOct62lDG5As64blqpBWNQd0ChFVoK2poVZy0Fw8FKWVmtmSHNqra24pwt0c3RN3_9OUNMqs8ppnxSUVnV2ZlLllnsyDLBxxigU7vgRh2-FCXqp0HVq98G1U-DiuRhIqvujirIAfYOgorGwWTAugAmKevdv_pv6xF7sA</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Furati, Khaled M.</creator><creator>Iyiola, Olaniyi S.</creator><creator>Mustapha, Kassem</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170315</creationdate><title>An inverse source problem for a two-parameter anomalous diffusion with local time datum</title><author>Furati, Khaled M. ; Iyiola, Olaniyi S. ; Mustapha, Kassem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-fd44bb13395e434a8b9a633e7fe1eb6a961bc543b1ec4ed992daa3c0857dd2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Boundary conditions</topic><topic>Differential equations</topic><topic>Fourier analysis</topic><topic>Fractional diffusion</topic><topic>Hilfer derivative</topic><topic>Initial conditions</topic><topic>Integrals</topic><topic>Inverse source problem</topic><topic>Linear systems</topic><topic>Mittag-Leffler function</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furati, Khaled M.</creatorcontrib><creatorcontrib>Iyiola, Olaniyi S.</creatorcontrib><creatorcontrib>Mustapha, Kassem</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furati, Khaled M.</au><au>Iyiola, Olaniyi S.</au><au>Mustapha, Kassem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inverse source problem for a two-parameter anomalous diffusion with local time datum</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>73</volume><issue>6</issue><spage>1008</spage><epage>1015</epage><pages>1008-1015</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We determine the space-dependent source term for a two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint boundary conditions and two local time-distinct datum. A bi-orthogonal pair of bases is used to construct a series representation of the solution and the source term. The two local time conditions spare us from measuring the fractional integral initial conditions commonly associated with fractional derivatives. On the other hand, they lead to delicate 2×2 linear systems for the Fourier coefficients of the source term and of the fractional integral of the solution at t=0. The asymptotic behavior and estimates of the generalized Mittag-Leffler function are used to establish the solvability of these linear systems, and to obtain sufficient conditions for the existence of our construction. Analytical and numerical examples are provided.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2016.06.036</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2017-03, Vol.73 (6), p.1008-1015
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_1927133493
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Asymptotic methods
Boundary conditions
Differential equations
Fourier analysis
Fractional diffusion
Hilfer derivative
Initial conditions
Integrals
Inverse source problem
Linear systems
Mittag-Leffler function
Studies
title An inverse source problem for a two-parameter anomalous diffusion with local time datum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inverse%20source%20problem%20for%20a%20two-parameter%20anomalous%20diffusion%20with%20local%20time%20datum&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Furati,%20Khaled%20M.&rft.date=2017-03-15&rft.volume=73&rft.issue=6&rft.spage=1008&rft.epage=1015&rft.pages=1008-1015&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2016.06.036&rft_dat=%3Cproquest_cross%3E1927133493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927133493&rft_id=info:pmid/&rft_els_id=S0898122116303686&rfr_iscdi=true