An inverse source problem for a two-parameter anomalous diffusion with local time datum

We determine the space-dependent source term for a two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint boundary conditions and two local time-distinct datum. A bi-orthogonal pair of bases is used to construct a series representation of the solution and the source term. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2017-03, Vol.73 (6), p.1008-1015
Hauptverfasser: Furati, Khaled M., Iyiola, Olaniyi S., Mustapha, Kassem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine the space-dependent source term for a two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint boundary conditions and two local time-distinct datum. A bi-orthogonal pair of bases is used to construct a series representation of the solution and the source term. The two local time conditions spare us from measuring the fractional integral initial conditions commonly associated with fractional derivatives. On the other hand, they lead to delicate 2×2 linear systems for the Fourier coefficients of the source term and of the fractional integral of the solution at t=0. The asymptotic behavior and estimates of the generalized Mittag-Leffler function are used to establish the solvability of these linear systems, and to obtain sufficient conditions for the existence of our construction. Analytical and numerical examples are provided.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2016.06.036