Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions

The shortage of surface water in arid and semiarid regions has led to the more use of the groundwater resources. In these areas, the groundwater is essential for activities such as water supply and irrigation. One of the most important stages in sustainable yield of groundwater resources is awarenes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2017-08, Vol.76 (15), p.1, Article 538
Hauptverfasser: Choubin, Bahram, Malekian, Arash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The shortage of surface water in arid and semiarid regions has led to the more use of the groundwater resources. In these areas, the groundwater is essential for activities such as water supply and irrigation. One of the most important stages in sustainable yield of groundwater resources is awareness of groundwater level. In this study, we have applied artificial neural networks (ANN) and autoregressive integrated moving average (ARIMA) models for groundwater level forecasting to 4 months ahead in Shiraz basin, southwestern Iran. Time series analysis was conducted according to the Box–Jenkins method. Meanwhile, gamma and M-test were considered for determining the optimal input combination and length of training and testing data in the ANN model. The results indicated that performance of multilayer perceptron neural network (4, 14, 1) and ARIMA (2, 1, 2) is satisfactory in the groundwater level forecasting for one month ahead. The performance comparison shows that the ARIMA model performs appreciably better than the ANN.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-017-6870-8