Immune Modulation in Normal Human Peripheral Blood Mononuclear Cells (PBMCs) (Lymphocytes) in Response to Benzofuran-2-Carboxylic Acid Derivative KMEG during Spaceflight

Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microgravity science and technology 2017-08, Vol.29 (4), p.331-336
Hauptverfasser: Okoro, Elvis, Mann, Vivek, Ellis, Ivory, Mansoor, Elvedina, Olamigoke, Loretta, Marriott, Karla Sue, Denkins, Pamela, Williams, Willie, Sundaresan, Alamelu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p < 0.001) and five related genes were found to be significantly down-regulated. These genes play a significant role in promoting the proliferation of T-lymphocytes, the regulation of membrane trafficking, promote early response, mediating C-myc related proliferation, promote antiapoptotic activity and protects mitochondria from the accumulation of oxidatively damaged membrane proteins. Overall, our analysis indicates that KMEG promotes T- cell proliferation and has an anti-inflammatory effect, thereby increasing immunity and possible protection from chronic inflammation setting which is optimally required during lo
ISSN:0938-0108
1875-0494
DOI:10.1007/s12217-017-9551-z