Pure exact structures and the pure derived category of a scheme

Let $\mathcal{C}$ be closed symmetric monoidal Grothendieck category. We define the pure derived category with respect to the monoidal structure via a relative injective model category structure on the category C( $\mathcal{C}$ ) of unbounded chain complexes in $\mathcal{C}$ . We use λ-Purity techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2017-09, Vol.163 (2), p.251-264
Hauptverfasser: ESTRADA, SERGIO, GILLESPIE, JAMES, ODABAŞI, SINEM
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\mathcal{C}$ be closed symmetric monoidal Grothendieck category. We define the pure derived category with respect to the monoidal structure via a relative injective model category structure on the category C( $\mathcal{C}$ ) of unbounded chain complexes in $\mathcal{C}$ . We use λ-Purity techniques to get this. As application we define the stalkwise pure derived category of the category of quasi–coherent sheaves on a quasi-separated scheme. We also give a different approach by using the category of flat quasi–coherent sheaves.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004116000980