Pure exact structures and the pure derived category of a scheme
Let $\mathcal{C}$ be closed symmetric monoidal Grothendieck category. We define the pure derived category with respect to the monoidal structure via a relative injective model category structure on the category C( $\mathcal{C}$ ) of unbounded chain complexes in $\mathcal{C}$ . We use λ-Purity techni...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2017-09, Vol.163 (2), p.251-264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\mathcal{C}$
be closed symmetric monoidal Grothendieck category. We define the pure derived category with respect to the monoidal structure via a relative injective model category structure on the category C(
$\mathcal{C}$
) of unbounded chain complexes in
$\mathcal{C}$
. We use λ-Purity techniques to get this. As application we define the stalkwise pure derived category of the category of quasi–coherent sheaves on a quasi-separated scheme. We also give a different approach by using the category of flat quasi–coherent sheaves. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004116000980 |