Superintegrable models on Riemannian surfaces of revolution with integrals of any integer degree (I)

We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs. The local structure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2017-07, Vol.22 (4), p.319-352
1. Verfasser: Valent, Galliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs. The local structure of these systems is under control of a linear ordinary differential equation of order n which is homogeneous for even integrals and weakly inhomogeneous for odd integrals. The form of the integrals is explicitly given in the so-called “simple” case (see Definition 2). Some globally defined examples are worked out which live either in H 2 or in R 2 .
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354717040013