Radiation Fluxes in a Business District of Shanghai, China

Radiative fluxes are key drivers of surface–atmosphere heat exchanges in cities. Here the first yearlong (December 2012–November 2013) measurements of the full radiation balance for a dense urban site in Shanghai, China, are presented, collected with a CNR4 net radiometer mounted 80 m above ground....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2016-11, Vol.55 (11), p.2451-2468
Hauptverfasser: Ao, Xiangyu, Grimmond, C. S. B., Liu, Dongwei, Han, Zhihui, Hu, Ping, Wang, Yadong, Zhen, Xinrong, Tan, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiative fluxes are key drivers of surface–atmosphere heat exchanges in cities. Here the first yearlong (December 2012–November 2013) measurements of the full radiation balance for a dense urban site in Shanghai, China, are presented, collected with a CNR4 net radiometer mounted 80 m above ground. Clear-sky incoming shortwave radiation K ↓ (median daytime maxima) ranges from 575 W m−2 in winter to 875 W m−2 in spring, with cloud cover reducing the daily maxima by about 160 W m−2. The median incoming longwave radiation daytime maxima are 305 and 468 W m−2 in winter and summer, respectively, with increases of 30 and 15 W m−2 for cloudy conditions. The effect of air quality is evident: haze conditions decrease hourly median K ↓ by 11.3%. The midday (1100–1300 LST) clear-sky surface albedo α is 0.128, 0.141, 0.143, and 0.129 for winter, spring, summer, and autumn, respectively. The value of α varies with solar elevation and azimuth angle because of the heterogeneity of the urban surface. In winter, shadows play an important role in decreasing α in the late afternoon. For the site, the bulk α is 0.14. The Net All-Wave Radiation Parameterization Scheme/Surface Urban Energy and Water Balance Scheme (NARP/SUEWS) land surface model reproduces the radiation components at this site well, which is a promising result for applications elsewhere. These observations help to fill the gap of long-term radiation measurements in East Asian and low-latitude cities, quantifying the effects of season, cloud cover, and air quality.
ISSN:1558-8424
1558-8432
DOI:10.1175/JAMC-D-16-0082.1