Importance of the Vertical Resolution in Simulating SST Diurnal and Intraseasonal Variability in an Oceanic General Circulation Model

In this paper, the influence of high vertical resolution near the surface in an oceanic general circulation model in simulating the observed sea surface temperature (SST) variability is investigated. In situ observations of vertical temperature profiles are first used to quantify temperature variabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2017-06, Vol.30 (11), p.3963-3978
Hauptverfasser: Ge, Xuyang, Wang, Wanqiu, Kumar, Arun, Zhang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the influence of high vertical resolution near the surface in an oceanic general circulation model in simulating the observed sea surface temperature (SST) variability is investigated. In situ observations of vertical temperature profiles are first used to quantify temperature variability with depth near the ocean surface. The analysis shows that there is a sharp vertical temperature gradient within the top 10mof the ocean. Both diurnal and intraseasonal variabilities of the ocean temperatures are largest near the surface and decrease with the ocean depth. Numerical experiments with an oceanic general circulation model are next carried out with 1- and 10-m vertical resolutions for the upper ocean to study the dependence of the simulated SST and vertical temperature structure on the vertical resolution. It is found that the simulated diurnal and intraseasonal variabilities, as well as the associated vertical temperature gradient near the surface, are strongly influenced by the oceanic vertical resolution, with the 1-m vertical resolution producing a stronger vertical temperature gradient and temporal variability than the 10-m vertical resolution. These results suggest that a realistic representation of SST variability with a high vertical resolution in the upper ocean is required for a coupled atmosphere–ocean model to correctly simulate the observed tropical intraseasonal oscillations, including the Madden–Julian oscillation and the boreal summer monsoon intraseasonal oscillation, which are strongly linked with the underlying SST.
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli-d-16-0689.1