A System for Retrieval and Incubation of Benthic Sediment Cores at In Situ Ambient Pressure and under Controlled or Manipulated Environmental Conditions

The investigation of benthic biodiversity and biogeochemical processes in the deep sea is complicated by the need to conduct experiments at in situ pressures. Recovery of sediment samples to the surface without maintaining full-depth ambient pressure may damage the organisms that are of interest or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2017-05, Vol.34 (5), p.983-1000
Hauptverfasser: Jackson, Keith, Witte, Ursula, Chalmers, Stewart, Anders, Erik, Parkes, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The investigation of benthic biodiversity and biogeochemical processes in the deep sea is complicated by the need to conduct experiments at in situ pressures. Recovery of sediment samples to the surface without maintaining full-depth ambient pressure may damage the organisms that are of interest or cause physiological changes that could influence the processes being studied. It is possible to carry out in situ experiments using remotely operated vehicles (ROVs) or lander systems. However, the costs and complexity of ROV operations are significant and, for both ROVs and landers, the complexity and repeatability of the experiments are subject to the limitations imposed by these platforms. A system is described—the Multi-Autoclave Corer Experiment (MAC-EXP)—that has been developed with the aim of offering a new experimental approach to investigators. The MAC-EXP system is designed to retrieve sediment cores from depths down to 3500 m and to seal them into pressure chambers before being recovered so that they are maintained at their normal ambient pressure. After recovery the core chambers can be connected to a laboratory incubation system that allows for experimentation on the sediment without loss of pressure and under controlled conditions of temperature and oxygen concentration. The system is relatively low cost when compared to ROV systems and can be deployed using methods and equipment similar to those used for routine deployments of small unpressurized multicorers. The results of sea trials are detailed.
ISSN:0739-0572
1520-0426
DOI:10.1175/JTECH-D-16-0248.1