Evaluation and Error Analysis of Official Forecasts of Tropical Cyclones during 2005–14 over the Western North Pacific. Part I: Storm Tracks
Official forecasts of tropical cyclone (TC) tracks issued by the China Meteorological Administration (CMA); the Regional Specialized Meteorological Centre in Tokyo, Japan; and the Joint Typhoon Warning Center (JTWC) were used to evaluate the accuracies, biases, and trends of TC track forecasts durin...
Gespeichert in:
Veröffentlicht in: | Weather and forecasting 2017-04, Vol.32 (2), p.689-712 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Official forecasts of tropical cyclone (TC) tracks issued by the China Meteorological Administration (CMA); the Regional Specialized Meteorological Centre in Tokyo, Japan; and the Joint Typhoon Warning Center (JTWC) were used to evaluate the accuracies, biases, and trends of TC track forecasts during 2005–14 over the western North Pacific. Overall, the JTWC demonstrated the best forecasting performance. However, the CMA showed the most significant rate of improvement. Two main zones were discovered in the regional distribution of forecast errors: a low-latitude zone that comprises the South China Sea and the sea region east of the Philippines, and a midlatitude zone comprising the southern Sea of Japan and the sea region east of Japan. When TCs moved into the former zone, there were both translational speed and direction biases in the forecast tracks, whereas slow biases were predominated in the latter zone. Twelve synoptic flow patterns of TCs with the largest error have been identified based on the steering flow theory. Among them, the most two common pattern are the pattern with the combination of cyclonic circulations, subtropical ridges, and midlatitude troughs (CRT, 26 TCs), and the pattern of the TCs’ track that cannot be explained by steering flow (NSF, 6 TCs). In the CRT pattern, TCs move northwestward forced by the cyclonic circulations and the subtropical ridges and then turn poleward and eastward under the influence of the midlatitude troughs. In the NSF pattern, storms embedded in the southwest flow by the cyclonic circulation and the steering flow suggest TCs should turn to the right and move northeastward but instead TCs persisted in moving northwestward. |
---|---|
ISSN: | 0882-8156 1520-0434 |
DOI: | 10.1175/WAF-D-16-0043.1 |