Drug transport in stimuli responsive acrylic and methacrylic interpenetrating polymer networks

ABSTRACT The interpenetrating polymer networks (IPNs) are recently gaining attention as sustained drug delivery systems because they could ensure a proper combination of functionality and network density to control the drug release profiles. This study aims to reveal how the functionality of two IPN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2017-11, Vol.134 (42), p.n/a
Hauptverfasser: Simeonov, Marin, Monova, Antonia, Kostova, Bistra, Vassileva, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The interpenetrating polymer networks (IPNs) are recently gaining attention as sustained drug delivery systems because they could ensure a proper combination of functionality and network density to control the drug release profiles. This study aims to reveal how the functionality of two IPNs based on polyacrylamide and respectively poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) influences their smart behavior as well as their properties as delivery systems of the cationic drug verapamil hydrochloride (VPM). The “extra” α‐methyl group of PMAA results into a loss of the temperature sensitivity in the studied region and changes the pH responsivity of the PMAA/PAAM IPNs as compared to the PAA/PAAM IPNs. Moreover, the VPM diffusion in both IPNs depends on their composition due to the change in their functionality as well as of their network density. The “extra” α‐methyl group of PMAA defines its enhanced hydrophobicity and hence influences the VPM diffusion mechanism. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45380.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.45380