The conservation value of tree decay processes as a key driver structuring tree cavity nest webs in South American temperate rainforests

South American temperate rainforests, a global biodiversity hotspot, have been reduced to nearly 30% of their original extent and most remaining stands are being degraded. Cavity-nesting vertebrate communities are dependent on cavity-bearing trees and hierarchically structured within nest webs. Eval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biodiversity and conservation 2017-09, Vol.26 (10), p.2453-2472
Hauptverfasser: Altamirano, Tomás A., Ibarra, José Tomás, Martin, Kathy, Bonacic, Cristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:South American temperate rainforests, a global biodiversity hotspot, have been reduced to nearly 30% of their original extent and most remaining stands are being degraded. Cavity-nesting vertebrate communities are dependent on cavity-bearing trees and hierarchically structured within nest webs. Evaluating the actual degree of cavity dependence (obligate, non-obligate) and the preferred attributes of trees by cavity nesters is critical to design conservation strategies in areas undergoing habitat loss. During three breeding seasons (2010–2013), we studied the cavity-nesting bird community in temperate rainforests of Chile. We found the highest reported proportion of tree cavity nesters (n = 29 species; 57%) compared to non-cavity-using birds for any forest system. Four species were excavators and 25 were secondary cavity nesters (SCNs). Among SCNs, ten species were obligate and 15 were non-obligate cavity nesters. Seventy-five percent of nests of SCNs were located in cavities produced by tree decay processes and the remaining 25% were in cavities excavated mainly by Pygarrhichas albogularis and Campephilus magellanicus . Nest web structure had a low dominance and evenness, with most network interactions occurring between SCNs and large decaying trees. Tree diameter at breast height (DBH) was larger in nest-trees (57.3 cm) than in available trees (26.1 cm). Cavity nesters showed a strong preference for dead trees, both standing and fallen (58% of nests). Our results stress that retaining large decaying and standing dead trees (DBH > 57 cm), and large fallen trees, should be a priority for retention in forest management plans in this globally threatened ecosystem.
ISSN:0960-3115
1572-9710
DOI:10.1007/s10531-017-1369-x