The Costs of Simplicity: Why Multilevel Models May Benefit from Accounting for Cross-Cluster Differences in the Effects of Controls

Context effects, where a characteristic of an upper-level unit or cluster (e.g., a country) affects outcomes and relationships at a lower level (e.g., that of the individual), are a primary object of sociological inquiry. In recent years, sociologists have increasingly analyzed such effects using qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American sociological review 2017-08, Vol.82 (4), p.796-827
Hauptverfasser: Heisig, Jan Paul, Schaeffer, Merlin, Giesecke, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context effects, where a characteristic of an upper-level unit or cluster (e.g., a country) affects outcomes and relationships at a lower level (e.g., that of the individual), are a primary object of sociological inquiry. In recent years, sociologists have increasingly analyzed such effects using quantitative multilevel modeling. Our review of multilevel studies in leading sociology journals shows that most assume the effects of lower-level control variables to be invariant across clusters, an assumption that is often implausible. Comparing mixed-effects (random-intercept and slope) models, cluster-robust pooled OLS, and two-step approaches, we find that erroneously assuming invariant coefficients reduces the precision of estimated context effects. Semi-formal reasoning and Monte Carlo simulations indicate that loss of precision is largest when there is pronounced cross-cluster heterogeneity in the magnitude of coefficients, when there are marked compositional differences among clusters, and when the number of clusters is small. Although these findings suggest that practitioners should fit more flexible models, illustrative analyses of European Social Survey data indicate that maximally flexible mixed-effects models do not perform well in real-life settings. We discuss the need to balance parsimony and flexibility, and we demonstrate the encouraging performance of one prominent approach for reducing model complexity.
ISSN:1939-8271
0003-1224
1939-8271
DOI:10.1177/0003122417717901