A formula for the geometric Jacquet functor and its character sheaf analogue

Let ( G , K ) be a symmetric pair over the complex numbers, and let X = K \ G be the corresponding symmetric space. In this paper we study a nearby cycles functor associated to a degeneration of X to M N \ G , which we call the “wonderful degeneration”. We show that on the category of character shea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2017-07, Vol.27 (4), p.772-797
Hauptverfasser: Chen, Tsao-Hsien, Yom Din, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( G , K ) be a symmetric pair over the complex numbers, and let X = K \ G be the corresponding symmetric space. In this paper we study a nearby cycles functor associated to a degeneration of X to M N \ G , which we call the “wonderful degeneration”. We show that on the category of character sheaves on X , this functor is isomorphic to a composition of two averaging functors (a parallel result, on the level of functions in the p -adic setting, was obtained in [ BK , SV ]). As an application, we obtain a formula for the geometric Jacquet functor of [ ENV ] and use this formula to give a geometric proof of the celebrated Casselman’s submodule theorem and establish a second adjointness theorem for Harish-Chandra modules.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-017-0413-z