Study of Behavior of Concrete under Axial and Triaxial Compression

In this investigation, polymer concrete (PC) with three different epoxy resin contents, ordinary cement concrete (OCC), lightweight concrete (LWC), and lime-mortar soil (LMS) have been studied under uniaxial and triaxial compression tests to determine their mechanical behavior by measuring axial str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI materials journal 2017-07, Vol.114 (4), p.619
Hauptverfasser: Toufigh, Vahab, Abyaneh, Mostafa Jafarian, Jafari, Khashayar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this investigation, polymer concrete (PC) with three different epoxy resin contents, ordinary cement concrete (OCC), lightweight concrete (LWC), and lime-mortar soil (LMS) have been studied under uniaxial and triaxial compression tests to determine their mechanical behavior by measuring axial stress-strain and volumetric strain versus axial strain curves. According to the results, PC showed higher strength, ductility, and energy absorption than that of OCC and LWC. Then, nonlinear finite element analysis (NFEA) was implemented to predict the experimental results using hierarchical single-surface (HISS) failure criterion and disturbed state concept (DSC) to capture the elastoplastic behavior of concrete materials including volumetric strain. Moreover, the pattern of failure was estimated using ultimate disturbance values obtained from the model, followed by comparison with the experimental and Mohr-Coulomb failure patterns. The proposed model is applicable to a variety of materials with different behavior, and its prediction is in good accordance with experimental results. Keywords: disturbed state concept (DSC); hierarchical single-surface (HISS) failure criterion; nonlinear finite element analysis (NFEA); ordinary cement concrete (OCC); polymer concrete (PC); triaxial compression test; uniaxial compression test; volumetric strain.
ISSN:0889-325X
1944-737X
DOI:10.14359/51689716