Worst-case multi-objective error estimation and adaptivity
This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite-element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2017-01, Vol.313, p.723-743 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite-element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches, which consider only a single objective functional, the presented methodology applies to general closed convex subsets of the dual space and constructs a worst-case error estimate of the finite-element approximation error. This worst-case multi-objective error estimate conforms to a dual-weighted residual, in which the dual solution is associated with an approximate supporting functional of the objective set at the approximation error. We regard both standard approximation errors and data-incompatibility errors associated with incompatibility of boundary data with the trace of the finite-element space. Numerical experiments are presented to demonstrate the efficacy of applying the proposed worst-case multi-objective error estimate in adaptive refinement procedures. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2016.10.007 |