Worst-case multi-objective error estimation and adaptivity

This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite-element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2017-01, Vol.313, p.723-743
Hauptverfasser: van Brummelen, E.H., Zhuk, S., van Zwieten, G.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite-element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches, which consider only a single objective functional, the presented methodology applies to general closed convex subsets of the dual space and constructs a worst-case error estimate of the finite-element approximation error. This worst-case multi-objective error estimate conforms to a dual-weighted residual, in which the dual solution is associated with an approximate supporting functional of the objective set at the approximation error. We regard both standard approximation errors and data-incompatibility errors associated with incompatibility of boundary data with the trace of the finite-element space. Numerical experiments are presented to demonstrate the efficacy of applying the proposed worst-case multi-objective error estimate in adaptive refinement procedures.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2016.10.007