Composite Salt in Porous Metal‐Organic Frameworks for Adsorption Heat Transformation
Adsorptive heat transformation systems such as adsorption thermal batteries and chillers can provide space heating and cooling in a more environmental friendly way. However, their use is still hindered by their relatively poor performances and large sizes due to the limited properties of solid adsor...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-06, Vol.27 (21), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adsorptive heat transformation systems such as adsorption thermal batteries and chillers can provide space heating and cooling in a more environmental friendly way. However, their use is still hindered by their relatively poor performances and large sizes due to the limited properties of solid adsorbents. Here, the spray‐drying continuous‐flow synthesis of a new type of solid adsorbents that results from combining metal‐organic frameworks (MOFs), such as UiO‐66, and hygroscopic salts, such as CaCl2 has been reported. These adsorbents, commonly named as composite salt in porous matrix (CSPM) materials, allow improving the water uptake capabilities of MOFs while preventing their dissolution in the water adsorbed; a common characteristic of these salts due to the deliquescence effect. It is anticipated that MOF‐based CSPMs, in which the percentage of salt can be tuned, are promising candidates for thermal batteries and chillers. In these applications, it is showed that a CSPM made of UiO‐66 and CaCl2 (38% w/w) exhibits a heat storage capacity of 367 kJ kg−1 , whereas a second CSPM made of UiO‐66 and CaCl2 (53% w/w) shows a specific cooling power of 631 W kg−1 and a coefficient of performance of 0.83, comparable to the best solid adsorbents reported so far.
A new type of composite salt in porous matrix adsorbents that results from combining metal‐organic frameworks (MOFs) and hygroscopic salts (CaCl2, LiCl) has been synthesized by spray‐drying continuous‐flow method. The applicability of these MOF‐based CSPMs has been demonstrated for potential applications in thermal batteries and refrigerator systems, demonstrating high capacity and energetic efficiency. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201606424 |