Improved Interfacial Floatability of Superhydrophobic/Superhydrophilic Janus Sheet Inspired by Lotus Leaf

Interfacial materials exhibiting superwettability have emerged as important tools for solving the real‐world issues, such as oil‐spill cleanup, fog harvesting, etc. The Janus superwettability of lotus leaf inspires the design of asymmetric interface materials using the superhydrophobic/superhydrophi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-07, Vol.27 (27), p.n/a
Hauptverfasser: Zhao, Yuyan, Yu, Cunming, Lan, Hao, Cao, Moyuan, Jiang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interfacial materials exhibiting superwettability have emerged as important tools for solving the real‐world issues, such as oil‐spill cleanup, fog harvesting, etc. The Janus superwettability of lotus leaf inspires the design of asymmetric interface materials using the superhydrophobic/superhydrophilic binary cooperative strategy. Here, the presented Janus copper sheet, composed of a superhydrophobic upper surface and a superhydrophilic lower surface, is able to be steadily fixed at the air/water interfaces, showing improved interfacial floatability. Compared with the floatable superhydrophobic substrate, the Janus sheet not only floats on but also attaches to the air–water interface. Similar results on Janus sheet are discovered at other multiphase interfaces such as hexane/water and water/CCl4 interfaces. In accordance with the improved stability and antirotation property, the microboat constructed by a Janus sheet shows the reliable navigating ability even under turbulent water flow. This contribution should unlock more functions of Janus interface materials, and extend the application scope of the binary cooperative materials system with superwettability. Inspired by the cooperative superwettability of a lotus leaf, it is demonstrated that a Janus sheet exhibiting versatile wettability can be stably fixed at multiphase interfaces. Based on the superhydrophobic/superhydrophilic binary cooperative effect, the Janus sheet floats on and tightly adheres to the interfaces.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201701466