Rigidity of complete manifolds with parallel Cotton tensor

The aim of this paper is to show some rigidity results for complete Riemannian manifolds with parallel Cotton tensor. In particular, we prove that any compact manifold of dimension n ≥ 3 with parallel Cotton tensor and positive constant scalar curvature is isometric to a finite quotient of S n under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2017-08, Vol.109 (2), p.179-189
Hauptverfasser: Chu, Yawei, Fang, Shouwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 2
container_start_page 179
container_title Archiv der Mathematik
container_volume 109
creator Chu, Yawei
Fang, Shouwen
description The aim of this paper is to show some rigidity results for complete Riemannian manifolds with parallel Cotton tensor. In particular, we prove that any compact manifold of dimension n ≥ 3 with parallel Cotton tensor and positive constant scalar curvature is isometric to a finite quotient of S n under a pointwise or integral pinching condition. Moreover, a rigidity theorem for stochastically complete manifolds with parallel Cotton tensor is also given. The proofs rely mainly on curvature elliptic estimates and the weak maximum principle.
doi_str_mv 10.1007/s00013-017-1047-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1920396218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920396218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-24e15fdad4846688951fb48ffb08dd58f35ef0fb1552f4d3c45183386c974b5c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMPtrUmyx-wYIgCt5C2yRrl25TkyzSf2-WevDiaQ7zPu8MD0KXQK-B0vImUkqBEwolASpKMh2hBQhGiaq4OkaLvOZEqerjFJ3FuM1hpspqgW5fu01nujRh73Drd2Nvk8W7euic703E3136xGMd6r63PV75lPyAkx2iD-foxNV9tBe_c4neH-7fVk9k_fL4vLpbk5ZDkQgTFqQztRFKFEV-QYJrhHKuocoYqRyX1lHXgJTMCcNbIUFxroq2KkUjW75EV3PvGPzX3sakt34fhnxSQ8UorwqWgSWCOdUGH2OwTo-h29Vh0kD1QZGeFemsSB8U6SkzbGZizg4bG_40_wv9AIfeaSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920396218</pqid></control><display><type>article</type><title>Rigidity of complete manifolds with parallel Cotton tensor</title><source>SpringerLink (Online service)</source><creator>Chu, Yawei ; Fang, Shouwen</creator><creatorcontrib>Chu, Yawei ; Fang, Shouwen</creatorcontrib><description>The aim of this paper is to show some rigidity results for complete Riemannian manifolds with parallel Cotton tensor. In particular, we prove that any compact manifold of dimension n ≥ 3 with parallel Cotton tensor and positive constant scalar curvature is isometric to a finite quotient of S n under a pointwise or integral pinching condition. Moreover, a rigidity theorem for stochastically complete manifolds with parallel Cotton tensor is also given. The proofs rely mainly on curvature elliptic estimates and the weak maximum principle.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-017-1047-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cotton ; Curvature ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Probability theory ; Randomness ; Rigidity</subject><ispartof>Archiv der Mathematik, 2017-08, Vol.109 (2), p.179-189</ispartof><rights>Springer International Publishing 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-24e15fdad4846688951fb48ffb08dd58f35ef0fb1552f4d3c45183386c974b5c3</citedby><cites>FETCH-LOGICAL-c316t-24e15fdad4846688951fb48ffb08dd58f35ef0fb1552f4d3c45183386c974b5c3</cites><orcidid>0000-0002-6818-3048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00013-017-1047-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00013-017-1047-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chu, Yawei</creatorcontrib><creatorcontrib>Fang, Shouwen</creatorcontrib><title>Rigidity of complete manifolds with parallel Cotton tensor</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>The aim of this paper is to show some rigidity results for complete Riemannian manifolds with parallel Cotton tensor. In particular, we prove that any compact manifold of dimension n ≥ 3 with parallel Cotton tensor and positive constant scalar curvature is isometric to a finite quotient of S n under a pointwise or integral pinching condition. Moreover, a rigidity theorem for stochastically complete manifolds with parallel Cotton tensor is also given. The proofs rely mainly on curvature elliptic estimates and the weak maximum principle.</description><subject>Cotton</subject><subject>Curvature</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Probability theory</subject><subject>Randomness</subject><subject>Rigidity</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMPtrUmyx-wYIgCt5C2yRrl25TkyzSf2-WevDiaQ7zPu8MD0KXQK-B0vImUkqBEwolASpKMh2hBQhGiaq4OkaLvOZEqerjFJ3FuM1hpspqgW5fu01nujRh73Drd2Nvk8W7euic703E3136xGMd6r63PV75lPyAkx2iD-foxNV9tBe_c4neH-7fVk9k_fL4vLpbk5ZDkQgTFqQztRFKFEV-QYJrhHKuocoYqRyX1lHXgJTMCcNbIUFxroq2KkUjW75EV3PvGPzX3sakt34fhnxSQ8UorwqWgSWCOdUGH2OwTo-h29Vh0kD1QZGeFemsSB8U6SkzbGZizg4bG_40_wv9AIfeaSc</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Chu, Yawei</creator><creator>Fang, Shouwen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6818-3048</orcidid></search><sort><creationdate>20170801</creationdate><title>Rigidity of complete manifolds with parallel Cotton tensor</title><author>Chu, Yawei ; Fang, Shouwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-24e15fdad4846688951fb48ffb08dd58f35ef0fb1552f4d3c45183386c974b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cotton</topic><topic>Curvature</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Probability theory</topic><topic>Randomness</topic><topic>Rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yawei</creatorcontrib><creatorcontrib>Fang, Shouwen</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Yawei</au><au>Fang, Shouwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of complete manifolds with parallel Cotton tensor</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>109</volume><issue>2</issue><spage>179</spage><epage>189</epage><pages>179-189</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>The aim of this paper is to show some rigidity results for complete Riemannian manifolds with parallel Cotton tensor. In particular, we prove that any compact manifold of dimension n ≥ 3 with parallel Cotton tensor and positive constant scalar curvature is isometric to a finite quotient of S n under a pointwise or integral pinching condition. Moreover, a rigidity theorem for stochastically complete manifolds with parallel Cotton tensor is also given. The proofs rely mainly on curvature elliptic estimates and the weak maximum principle.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-017-1047-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6818-3048</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-889X
ispartof Archiv der Mathematik, 2017-08, Vol.109 (2), p.179-189
issn 0003-889X
1420-8938
language eng
recordid cdi_proquest_journals_1920396218
source SpringerLink (Online service)
subjects Cotton
Curvature
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Maximum principle
Probability theory
Randomness
Rigidity
title Rigidity of complete manifolds with parallel Cotton tensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20complete%20manifolds%20with%20parallel%20Cotton%20tensor&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Chu,%20Yawei&rft.date=2017-08-01&rft.volume=109&rft.issue=2&rft.spage=179&rft.epage=189&rft.pages=179-189&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-017-1047-y&rft_dat=%3Cproquest_cross%3E1920396218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920396218&rft_id=info:pmid/&rfr_iscdi=true