Rigidity of complete manifolds with parallel Cotton tensor

The aim of this paper is to show some rigidity results for complete Riemannian manifolds with parallel Cotton tensor. In particular, we prove that any compact manifold of dimension n ≥ 3 with parallel Cotton tensor and positive constant scalar curvature is isometric to a finite quotient of S n under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2017-08, Vol.109 (2), p.179-189
Hauptverfasser: Chu, Yawei, Fang, Shouwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to show some rigidity results for complete Riemannian manifolds with parallel Cotton tensor. In particular, we prove that any compact manifold of dimension n ≥ 3 with parallel Cotton tensor and positive constant scalar curvature is isometric to a finite quotient of S n under a pointwise or integral pinching condition. Moreover, a rigidity theorem for stochastically complete manifolds with parallel Cotton tensor is also given. The proofs rely mainly on curvature elliptic estimates and the weak maximum principle.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-017-1047-y