On algebras of the variety B 1,1

By B1,1 we denote the variety of unary algebras of signature f, g which is defined by the identity fg(x) = x. In this note it is proved that B1,1 is a cover for the variety A1,1, where A1,1 is the variety defined by the identities fg(x) = x = gf(x). It is also shown that each endomorphism of a stron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2017-07, Vol.38 (4), p.660-663
1. Verfasser: Kartashov, V. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By B1,1 we denote the variety of unary algebras of signature f, g which is defined by the identity fg(x) = x. In this note it is proved that B1,1 is a cover for the variety A1,1, where A1,1 is the variety defined by the identities fg(x) = x = gf(x). It is also shown that each endomorphism of a strongly connected algebra from B1,1 is an automorphism.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080217040102