Mixed problem for the wave equation with a summable potential and nonzero initial velocity
The resolvent approach in the Fourier method, combined with Krylov’s ideas concerning convergence acceleration for Fourier series, is used to obtain a classical solution of a mixed problem for the wave equation with a summable potential, fixed ends, a zero initial position, and an initial velocity ψ...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2017-05, Vol.95 (3), p.273-275 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The resolvent approach in the Fourier method, combined with Krylov’s ideas concerning convergence acceleration for Fourier series, is used to obtain a classical solution of a mixed problem for the wave equation with a summable potential, fixed ends, a zero initial position, and an initial velocity ψ(
x
), where ψ(
x
) is absolutely continuous, ψ'(
x
) ∈
L
2
[0,1], and ψ(0) = ψ(1) = 0. In the case ψ(
x
) ∈
L
[0,1], it is shown that the series of the formal solution converges uniformly and is a weak solution of the mixed problem. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S106456241703022X |