Distributional boundary values of holomorphic functions on product domains
We show that holomorphic functions of polynomial growth on domains with corners have distributional boundary values in an appropriate sense, provided the corners are generic CR manifolds. We also prove an analog of the Bochner–Hartogs theorem for these boundary values for the simplest such domains,...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2017-08, Vol.286 (3-4), p.1145-1171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that holomorphic functions of polynomial growth on domains with corners have distributional boundary values in an appropriate sense, provided the corners are generic CR manifolds. We also prove an analog of the Bochner–Hartogs theorem for these boundary values for the simplest such domains, the product domains. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-016-1796-5 |