Distributional boundary values of holomorphic functions on product domains

We show that holomorphic functions of polynomial growth on domains with corners have distributional boundary values in an appropriate sense, provided the corners are generic CR manifolds. We also prove an analog of the Bochner–Hartogs theorem for these boundary values for the simplest such domains,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2017-08, Vol.286 (3-4), p.1145-1171
Hauptverfasser: Chakrabarti, Debraj, Shafikov, Rasul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that holomorphic functions of polynomial growth on domains with corners have distributional boundary values in an appropriate sense, provided the corners are generic CR manifolds. We also prove an analog of the Bochner–Hartogs theorem for these boundary values for the simplest such domains, the product domains.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-016-1796-5