A Sampling Theorem for Fractional Wavelet Transform With Error Estimates
As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2017-09, Vol.65 (18), p.4797-4811 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4811 |
---|---|
container_issue | 18 |
container_start_page | 4797 |
container_title | IEEE transactions on signal processing |
container_volume | 65 |
creator | Shi, Jun Liu, Xiaoping Sha, Xuejun Zhang, Qinyu Zhang, Naitong |
description | As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations. |
doi_str_mv | 10.1109/TSP.2017.2715009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1919015277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7946263</ieee_id><sourcerecordid>1919015277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMskmaYymtFQoKXai3MLsmdstutyZbwX_flBZP88G8bxgeIY_ARgDMvBSrjxFnoEdcg2TMXJEBmBwylmt1nTKTIpNj_XlL7mLcMgZ5btSALCZ0he2-qXfftNi4LriW-i7QecCqr7sdNnSNv65xPS0C7mLatXRd9xs6CyFxs9jXLfYu3pMbj010D5c5JMV8VkwX2fL99W06WWYVN9BnXBmBvkQlDC-9zHnK-IXaoB4rjppphUKCQyf1uFTovUZWykoDitw4MSTP57P70P0cXOzttjuE9Ga0YMAwkFzrRLEzVYUuxuC83Yf0ZvizwOxJl0267EmXvehKladzpXbO_ePa5IorIY5XyWY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919015277</pqid></control><display><type>article</type><title>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Jun ; Liu, Xiaoping ; Sha, Xuejun ; Zhang, Qinyu ; Zhang, Naitong</creator><creatorcontrib>Shi, Jun ; Liu, Xiaoping ; Sha, Xuejun ; Zhang, Qinyu ; Zhang, Naitong</creatorcontrib><description>As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2715009</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aliasing ; Chirp ; Fractional Fourier transform ; fractional wavelet transform ; Frequencies ; Multiresolution analysis ; Sampling ; Sampling error ; sampling theorem ; Signal analysis ; Signal processing ; Subspaces ; Time-frequency analysis ; Wavelet analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4797-4811</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</citedby><cites>FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7946263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7946263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Sha, Xuejun</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><creatorcontrib>Zhang, Naitong</creatorcontrib><title>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.</description><subject>Aliasing</subject><subject>Chirp</subject><subject>Fractional Fourier transform</subject><subject>fractional wavelet transform</subject><subject>Frequencies</subject><subject>Multiresolution analysis</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>sampling theorem</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Subspaces</subject><subject>Time-frequency analysis</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMskmaYymtFQoKXai3MLsmdstutyZbwX_flBZP88G8bxgeIY_ARgDMvBSrjxFnoEdcg2TMXJEBmBwylmt1nTKTIpNj_XlL7mLcMgZ5btSALCZ0he2-qXfftNi4LriW-i7QecCqr7sdNnSNv65xPS0C7mLatXRd9xs6CyFxs9jXLfYu3pMbj010D5c5JMV8VkwX2fL99W06WWYVN9BnXBmBvkQlDC-9zHnK-IXaoB4rjppphUKCQyf1uFTovUZWykoDitw4MSTP57P70P0cXOzttjuE9Ga0YMAwkFzrRLEzVYUuxuC83Yf0ZvizwOxJl0267EmXvehKladzpXbO_ePa5IorIY5XyWY0</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Shi, Jun</creator><creator>Liu, Xiaoping</creator><creator>Sha, Xuejun</creator><creator>Zhang, Qinyu</creator><creator>Zhang, Naitong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170915</creationdate><title>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</title><author>Shi, Jun ; Liu, Xiaoping ; Sha, Xuejun ; Zhang, Qinyu ; Zhang, Naitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aliasing</topic><topic>Chirp</topic><topic>Fractional Fourier transform</topic><topic>fractional wavelet transform</topic><topic>Frequencies</topic><topic>Multiresolution analysis</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>sampling theorem</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Subspaces</topic><topic>Time-frequency analysis</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Sha, Xuejun</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><creatorcontrib>Zhang, Naitong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Jun</au><au>Liu, Xiaoping</au><au>Sha, Xuejun</au><au>Zhang, Qinyu</au><au>Zhang, Naitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-09-15</date><risdate>2017</risdate><volume>65</volume><issue>18</issue><spage>4797</spage><epage>4811</epage><pages>4797-4811</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2017.2715009</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4797-4811 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_1919015277 |
source | IEEE Electronic Library (IEL) |
subjects | Aliasing Chirp Fractional Fourier transform fractional wavelet transform Frequencies Multiresolution analysis Sampling Sampling error sampling theorem Signal analysis Signal processing Subspaces Time-frequency analysis Wavelet analysis Wavelet transforms |
title | A Sampling Theorem for Fractional Wavelet Transform With Error Estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sampling%20Theorem%20for%20Fractional%20Wavelet%20Transform%20With%20Error%20Estimates&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Shi,%20Jun&rft.date=2017-09-15&rft.volume=65&rft.issue=18&rft.spage=4797&rft.epage=4811&rft.pages=4797-4811&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2715009&rft_dat=%3Cproquest_RIE%3E1919015277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919015277&rft_id=info:pmid/&rft_ieee_id=7946263&rfr_iscdi=true |