A Sampling Theorem for Fractional Wavelet Transform With Error Estimates

As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-09, Vol.65 (18), p.4797-4811
Hauptverfasser: Shi, Jun, Liu, Xiaoping, Sha, Xuejun, Zhang, Qinyu, Zhang, Naitong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4811
container_issue 18
container_start_page 4797
container_title IEEE transactions on signal processing
container_volume 65
creator Shi, Jun
Liu, Xiaoping
Sha, Xuejun
Zhang, Qinyu
Zhang, Naitong
description As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.
doi_str_mv 10.1109/TSP.2017.2715009
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1919015277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7946263</ieee_id><sourcerecordid>1919015277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMskmaYymtFQoKXai3MLsmdstutyZbwX_flBZP88G8bxgeIY_ARgDMvBSrjxFnoEdcg2TMXJEBmBwylmt1nTKTIpNj_XlL7mLcMgZ5btSALCZ0he2-qXfftNi4LriW-i7QecCqr7sdNnSNv65xPS0C7mLatXRd9xs6CyFxs9jXLfYu3pMbj010D5c5JMV8VkwX2fL99W06WWYVN9BnXBmBvkQlDC-9zHnK-IXaoB4rjppphUKCQyf1uFTovUZWykoDitw4MSTP57P70P0cXOzttjuE9Ga0YMAwkFzrRLEzVYUuxuC83Yf0ZvizwOxJl0267EmXvehKladzpXbO_ePa5IorIY5XyWY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919015277</pqid></control><display><type>article</type><title>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Jun ; Liu, Xiaoping ; Sha, Xuejun ; Zhang, Qinyu ; Zhang, Naitong</creator><creatorcontrib>Shi, Jun ; Liu, Xiaoping ; Sha, Xuejun ; Zhang, Qinyu ; Zhang, Naitong</creatorcontrib><description>As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2715009</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aliasing ; Chirp ; Fractional Fourier transform ; fractional wavelet transform ; Frequencies ; Multiresolution analysis ; Sampling ; Sampling error ; sampling theorem ; Signal analysis ; Signal processing ; Subspaces ; Time-frequency analysis ; Wavelet analysis ; Wavelet transforms</subject><ispartof>IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4797-4811</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</citedby><cites>FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7946263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7946263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Sha, Xuejun</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><creatorcontrib>Zhang, Naitong</creatorcontrib><title>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.</description><subject>Aliasing</subject><subject>Chirp</subject><subject>Fractional Fourier transform</subject><subject>fractional wavelet transform</subject><subject>Frequencies</subject><subject>Multiresolution analysis</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>sampling theorem</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Subspaces</subject><subject>Time-frequency analysis</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMskmaYymtFQoKXai3MLsmdstutyZbwX_flBZP88G8bxgeIY_ARgDMvBSrjxFnoEdcg2TMXJEBmBwylmt1nTKTIpNj_XlL7mLcMgZ5btSALCZ0he2-qXfftNi4LriW-i7QecCqr7sdNnSNv65xPS0C7mLatXRd9xs6CyFxs9jXLfYu3pMbj010D5c5JMV8VkwX2fL99W06WWYVN9BnXBmBvkQlDC-9zHnK-IXaoB4rjppphUKCQyf1uFTovUZWykoDitw4MSTP57P70P0cXOzttjuE9Ga0YMAwkFzrRLEzVYUuxuC83Yf0ZvizwOxJl0267EmXvehKladzpXbO_ePa5IorIY5XyWY0</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Shi, Jun</creator><creator>Liu, Xiaoping</creator><creator>Sha, Xuejun</creator><creator>Zhang, Qinyu</creator><creator>Zhang, Naitong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170915</creationdate><title>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</title><author>Shi, Jun ; Liu, Xiaoping ; Sha, Xuejun ; Zhang, Qinyu ; Zhang, Naitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2693afba6392bf542fbaada79a7862a7076a351eae578b6aff7a0b5c71a349e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aliasing</topic><topic>Chirp</topic><topic>Fractional Fourier transform</topic><topic>fractional wavelet transform</topic><topic>Frequencies</topic><topic>Multiresolution analysis</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>sampling theorem</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Subspaces</topic><topic>Time-frequency analysis</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jun</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Sha, Xuejun</creatorcontrib><creatorcontrib>Zhang, Qinyu</creatorcontrib><creatorcontrib>Zhang, Naitong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Jun</au><au>Liu, Xiaoping</au><au>Sha, Xuejun</au><au>Zhang, Qinyu</au><au>Zhang, Naitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sampling Theorem for Fractional Wavelet Transform With Error Estimates</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-09-15</date><risdate>2017</risdate><volume>65</volume><issue>18</issue><spage>4797</spage><epage>4811</epage><pages>4797-4811</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2017.2715009</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4797-4811
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_1919015277
source IEEE Electronic Library (IEL)
subjects Aliasing
Chirp
Fractional Fourier transform
fractional wavelet transform
Frequencies
Multiresolution analysis
Sampling
Sampling error
sampling theorem
Signal analysis
Signal processing
Subspaces
Time-frequency analysis
Wavelet analysis
Wavelet transforms
title A Sampling Theorem for Fractional Wavelet Transform With Error Estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sampling%20Theorem%20for%20Fractional%20Wavelet%20Transform%20With%20Error%20Estimates&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Shi,%20Jun&rft.date=2017-09-15&rft.volume=65&rft.issue=18&rft.spage=4797&rft.epage=4811&rft.pages=4797-4811&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2715009&rft_dat=%3Cproquest_RIE%3E1919015277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919015277&rft_id=info:pmid/&rft_ieee_id=7946263&rfr_iscdi=true