A Sampling Theorem for Fractional Wavelet Transform With Error Estimates

As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-09, Vol.65 (18), p.4797-4811
Hauptverfasser: Shi, Jun, Liu, Xiaoping, Sha, Xuejun, Zhang, Qinyu, Zhang, Naitong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a generalization of the ordinary wavelet transform, the fractional wavelet transform (FRWT) is a very promising tool for signal analysis and processing. Many of its fundamental properties are already known; however, little attention has been paid to its sampling theory. In this paper, we first introduce the concept of multiresolution analysis associated with the FRWT, and then propose a sampling theorem for signals in FRWT-based multiresolution subspaces. The necessary and sufficient condition for the sampling theorem is derived. Moreover, sampling errors due to truncation and aliasing are discussed. The validity of the theoretical derivations is demonstrated via simulations.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2017.2715009