Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness
We consider the approximate recovery of multivariate periodic functions from a discrete set of function values taken on a rank-1 lattice. Moreover, the main result is the fact that any (non-)linear reconstruction algorithm taking function values on any integration lattice of size M has a dimension-i...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2017-08, Vol.136 (4), p.993-1034 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the approximate recovery of multivariate periodic functions from a discrete set of function values taken on a rank-1 lattice. Moreover, the main result is the fact that any (non-)linear reconstruction algorithm taking function values on any integration lattice of size
M
has a dimension-independent lower bound of
2
-
(
α
+
1
)
/
2
M
-
α
/
2
when considering the optimal worst-case error with respect to function spaces of (hybrid) mixed smoothness
α
>
0
on the
d
-torus. We complement this lower bound with upper bounds that coincide up to logarithmic terms. These upper bounds are obtained by a detailed analysis of a rank-1 lattice sampling strategy, where the rank-1 lattices are constructed by a component–by–component method. The lattice (group) structure allows for an efficient approximation of the underlying function from its sampled values using a single one-dimensional fast Fourier transform. This is one reason why these algorithms keep attracting significant interest. We compare our results to recent (almost) optimal methods based upon samples on sparse grids. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-016-0861-7 |