Zero-resource machine translation by multimodal encoder-decoder network with multimedia pivot

We propose an approach to build a neural machine translation system with no supervised resources (i.e., no parallel corpora) using multimodal embedded representation over texts and images. Based on the assumption that text documents are often likely to be described with other multimedia information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine translation 2017-06, Vol.31 (1/2), p.49-64
Hauptverfasser: Nakayama, Hideki, Nishida, Noriki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an approach to build a neural machine translation system with no supervised resources (i.e., no parallel corpora) using multimodal embedded representation over texts and images. Based on the assumption that text documents are often likely to be described with other multimedia information (e.g., images) some-what related to the content, we try to indirectly estimate the relevance between two languages. Using multimedia as the "pivot", we project all modalities into one common hidden space where samples belonging to similar semantic concepts should come close to each other, whatever the observed space of each sample is. This modalityagnostic representation is the key to bridging the gap between different modalities. Putting a decoder on top of it, our network can flexibly draw the outputs from any input modality. Notably, in the testing phase, we need only source language texts as the input for translation. In experiments, we tested our method on two benchmarks to show that it can achieve reasonable translation performance. We compared and investigated several possible implementations and found that an end-to-end model that simultaneously optimized both rank loss in multimodal encoders and cross-entropy loss in decoders performed the best.
ISSN:0922-6567
1573-0573
DOI:10.1007/s10590-017-9197-z