The value of remotely sensed surface soil moisture for model calibration using SWAT

Remotely sensed (RS) data can add value to a hydrological model calibration. Among this, RS soil moisture (SM) data have mostly been assimilated into conceptual hydrological models using various transformed variable or indices. In this study, raw RS surface SM is used as a calibration variable in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2017-07, Vol.31 (15), p.2764-2780
Hauptverfasser: Kundu, Dipangkar, Vervoort, R. Willem, Ogtrop, Floris F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remotely sensed (RS) data can add value to a hydrological model calibration. Among this, RS soil moisture (SM) data have mostly been assimilated into conceptual hydrological models using various transformed variable or indices. In this study, raw RS surface SM is used as a calibration variable in the Soil and Water Assessment Tool model. This means the SM values were not transformed into another variable (e.g., soil water index and root zone SM index). Using a nested catchment, calibration based only on RS SM and optimizing model parameters sensitive to SM using particle swarm optimization improved variations in streamflow predictions at some of the gauging stations compared to the uncalibrated model. This highlighted part of the catchments where the SM signal directly influenced the flow distribution. Additionally, highlighted high and low flow signals were mostly influenced. The seasonal breakdown indicates that the SM signal is more useful for calibrating in wetter seasons and in areas with higher variations in elevation. The results identified that calibration only on RS SM improved the general rainfall–runoff response simulation by introducing delays but cannot correct the overall routing effect. Furthermore, catchment characteristics (e.g., land use, elevation, soil types, and precipitation) regulating SM variation in different seasons highlighted by the model calibration are identified. This provides further opportunities to improve model parameterization.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.11219