Circular Pentagons and Real Solutions of Painlevé VI Equations

We study real solutions of a class of Painlevé VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-10, Vol.355 (1), p.51-95
Hauptverfasser: Eremenko, Alexandre, Gabrielov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study real solutions of a class of Painlevé VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval ( 1 , + ∞ ) and their mutual position. The monodromy of the associated linear equation and parameters of the Painlevé VI equation are easily recovered from the family of pentagons.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-017-2921-y