Circular Pentagons and Real Solutions of Painlevé VI Equations
We study real solutions of a class of Painlevé VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval (...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-10, Vol.355 (1), p.51-95 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study real solutions of a class of Painlevé VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval
(
1
,
+
∞
)
and their mutual position. The monodromy of the associated linear equation and parameters of the Painlevé VI equation are easily recovered from the family of pentagons. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-017-2921-y |