Simultaneous observations of magnetospheric ELF/VLF emissions in Canada, Finland, and Antarctica

To investigate longitudinal extent of electromagnetic wave activity, we report the first simultaneous ground‐based observations of magnetospheric ELF/VLF emissions at the following three longitudinally separated stations at auroral and subauroral latitudes: Athabasca, Canada (ATH; magnetic latitude:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-06, Vol.122 (6), p.6442-6454
Hauptverfasser: Yonezu, Yusuke, Shiokawa, Kazuo, Connors, Martin, Ozaki, Mitsunori, Manninen, Jyrki, Yamagishi, Hisao, Okada, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate longitudinal extent of electromagnetic wave activity, we report the first simultaneous ground‐based observations of magnetospheric ELF/VLF emissions at the following three longitudinally separated stations at auroral and subauroral latitudes: Athabasca, Canada (ATH; magnetic latitude: 61.3°N); Kannuslehto, Finland (KAN; 64.4°N); and Syowa Station, Antarctica (SYO; 70.5°S). The magnetic local time (MLT) separations of SYO‐KAN, ATH‐SYO, and ATH‐KAN, are 3, 8, and 11 h, respectively. Simultaneous observation data at these stations are available for a total of 48 days in 2012–2014. The simultaneous occurrence rates of ELF/VLF emissions are 9.8%, 2.5%, and 3.6% for SYO‐KAN, ATH‐SYO, and ATH‐KAN, respectively. We found that the simultaneous wave occurrence rate between two stations is higher in the morning‐dayside sector, indicating that the longitudinal extent of the emissions exhibits MLT dependence. When emissions are simultaneously observed at two stations, the average AE and |Dst| indices tend to be higher. Similarly, if the two stations are more separated in MLT, the average |Dst| index increases. These results suggest that the longitudinal extent of ELF/VLF emissions increases with increasing geomagnetic activity. Key Points Statistical study of ELF/VLF emissions simultaneously observed at three ground‐based stations Longitudinal extent of ELF/VLE emissions and the dependence of AE and Dst indices Dependence of wave occurrence rates on MLT at multiple stations
ISSN:2169-9380
2169-9402
DOI:10.1002/2017JA024211