Selective laser melting of nickel powder

Purpose Selective laser melting (SLM) is an additive manufacturing technology that is gaining industrial and research interest as it can directly fabricate near full density metallic components. The paper aims to identify suitable process parameters for SLM of processing of pure nickel powder and to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid prototyping journal 2017-01, Vol.23 (4), p.750-757
Hauptverfasser: Yap, Chor Yen, Tan, Hongyi Kenneth, Du, Zhenglin, Chua, Chee Kai, Dong, Zhili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Selective laser melting (SLM) is an additive manufacturing technology that is gaining industrial and research interest as it can directly fabricate near full density metallic components. The paper aims to identify suitable process parameters for SLM of processing of pure nickel powder and to study the microstructure of such products. The study also aims to characterize the microhardness and tensile properties of pure nickel produced by SLM. Design/methodology/approach A 24 factorial design experiment was carried out to identify the most significant factors on the resultant porosity of nickel parts. A subsequent experiment was carried out with a laser power of 350 W. The scanning speeds and hatch spacings were varied. Findings Scanning speed and hatch spacing have significant effects on the porosity of SLM components. A high relative density of 98.9 per cent was achieved, and microhardness of 140 to 160 Hv was obtained from these samples. A tensile strength 452 MPa was obtained. Research limitations/implications As the energy input levels were made in steps of 20 J/mm3 for the optimization study, the true optimal combination of parameters may have been missed. Therefore, researchers are encouraged to test the parameters with smaller variations in energy levels. Practical implications The paper provides a set of optimized parameters for the SLM of pure nickel. This study enables the three-dimensional (3D) printing of objects with nickel, which has applications in chemical catalyses and in microelectromechanical systems with its magnetostrictive properties. Originality value This research is the first in direct processing of pure nickel using SLM, with the identification of suitable process parameters. The study also provides an understanding of the porosity, microhardness, strength and microstructure of SLM produced nickel parts. This work paves the way for standardization of 3D printed nickel components and enables the applications of pure nickel via SLM.
ISSN:1355-2546
1758-7670
DOI:10.1108/RPJ-01-2016-0006