Solution of the boundary value problem for the equations of steady-state flow of a viscous incompressible nonisothermal fluid past a heated rigid spherical particle

We obtain an analytical solution of a boundary value problem for a viscous incompressible nonisothermal fluid assuming an exponential–power law dependence of the fluid viscosity on temperature. A uniqueness theorem for the Navier–Stokes equation linearized with respect to the velocity is proved. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2017-06, Vol.53 (6), p.766-772
Hauptverfasser: Malai, N. V., Shchukin, E. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain an analytical solution of a boundary value problem for a viscous incompressible nonisothermal fluid assuming an exponential–power law dependence of the fluid viscosity on temperature. A uniqueness theorem for the Navier–Stokes equation linearized with respect to the velocity is proved. We obtain expressions for the mass velocity components and pressure. The solution of the boundary value problem is sought in the form of an expansion in Legendre polynomials.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266117060076