Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability
Novolac is a low-cost carbon precursor which can be used to derive nanoporous carbon beads in sub-micrometer size. In this study, we introduce this material as a novel electrode material for capacitive deionization (CDI) with high performance stability and superior desalination rate. The polymer bea...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2017-06, Vol.117, p.46-54 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novolac is a low-cost carbon precursor which can be used to derive nanoporous carbon beads in sub-micrometer size. In this study, we introduce this material as a novel electrode material for capacitive deionization (CDI) with high performance stability and superior desalination rate. The polymer beads were synthesized employing a self-emulsifying system in an autoclave, pyrolyzed under argon, and activated with CO2, yielding a specific surface area of 1905 m2 g−1 with a high total pore volume of 1.26 cm3 g−1. After CO2 activation, the material shows a salt sorption capacity of ∼8 mg g−1, but the performance is highly influenced by functional groups, causing an inversion peak and fast performance decay. However, de-functionalization via hydrogen treatment is outlined as an effective strategy to improve the CDI performance. After hydrogen treatment of novolac-derived carbon beads, we obtained a salt sorption capacity of 11.5 mg g−1 with a charge efficiency of more than 80% and a performance stability of around 90% over more than 100 cycles. Particularly attractive for practical application is the very high average salt adsorption rate of 0.104 mg g−1 s−1, outperforming commercial activated carbons, which are commonly used for CDI, by at least a factor of two.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2017.02.054 |