Optical holonomic single quantum gates with a geometric spin under a zero field
The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2017-05, Vol.11 (5), p.309-314 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 5 |
container_start_page | 309 |
container_title | Nature photonics |
container_volume | 11 |
creator | Sekiguchi, Yuhei Niikura, Naeko Kuroiwa, Ryota Kano, Hiroki Kosaka, Hideo |
description | The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters.
Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques. |
doi_str_mv | 10.1038/nphoton.2017.40 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917693980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917693980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtrtwHX0-Y1jyyl-IJCN7oOaXJnOmWaTJMMor_eGVrEjat7uHzn3MtB6J6SBSW8Wrp-55N3C0ZouRDkAs1oKWQmKskvf3WVX6ObGPeE5FwyNkObTZ9aozu88513_tAaHFvXdICPg3ZpOOBGJ4j4s007rHED_gApTFTfOjw4C2Fcf0PwuG6hs7foqtZdhLvznKOP56f31Wu23ry8rR7XmRGMpKwuuDZlodlWErB1bvQoC8uAFkAISD2-S3Odcy2FsdZYIWzNqi3To50Kzufo4ZTbB38cICa190Nw40lFJS0LyWVFRmp5okzwMQaoVR_agw5fihI1tabOrampNSUmBzk54ki6BsKf3H8sPxlPczg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917693980</pqid></control><display><type>article</type><title>Optical holonomic single quantum gates with a geometric spin under a zero field</title><source>SpringerLink Journals</source><source>Nature</source><creator>Sekiguchi, Yuhei ; Niikura, Naeko ; Kuroiwa, Ryota ; Kano, Hiroki ; Kosaka, Hideo</creator><creatorcontrib>Sekiguchi, Yuhei ; Niikura, Naeko ; Kuroiwa, Ryota ; Kano, Hiroki ; Kosaka, Hideo</creatorcontrib><description>The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters.
Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2017.40</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/482 ; 639/766/483/2802 ; Adiabatic ; Adiabatic flow ; Applied and Technical Physics ; Computers ; Data processing ; Diamonds ; Electron spin ; Fault tolerance ; Gates ; Information processing ; Phase (cyclic) ; Physics ; Polarization ; Polarized light ; Quantum computers ; Quantum Physics ; Repeaters ; Vacancies</subject><ispartof>Nature photonics, 2017-05, Vol.11 (5), p.309-314</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</citedby><cites>FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</cites><orcidid>0000-0002-8850-4646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2017.40$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2017.40$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Niikura, Naeko</creatorcontrib><creatorcontrib>Kuroiwa, Ryota</creatorcontrib><creatorcontrib>Kano, Hiroki</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><title>Optical holonomic single quantum gates with a geometric spin under a zero field</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters.
Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.</description><subject>639/766/400/482</subject><subject>639/766/483/2802</subject><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Applied and Technical Physics</subject><subject>Computers</subject><subject>Data processing</subject><subject>Diamonds</subject><subject>Electron spin</subject><subject>Fault tolerance</subject><subject>Gates</subject><subject>Information processing</subject><subject>Phase (cyclic)</subject><subject>Physics</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Quantum computers</subject><subject>Quantum Physics</subject><subject>Repeaters</subject><subject>Vacancies</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKtrtwHX0-Y1jyyl-IJCN7oOaXJnOmWaTJMMor_eGVrEjat7uHzn3MtB6J6SBSW8Wrp-55N3C0ZouRDkAs1oKWQmKskvf3WVX6ObGPeE5FwyNkObTZ9aozu88513_tAaHFvXdICPg3ZpOOBGJ4j4s007rHED_gApTFTfOjw4C2Fcf0PwuG6hs7foqtZdhLvznKOP56f31Wu23ry8rR7XmRGMpKwuuDZlodlWErB1bvQoC8uAFkAISD2-S3Odcy2FsdZYIWzNqi3To50Kzufo4ZTbB38cICa190Nw40lFJS0LyWVFRmp5okzwMQaoVR_agw5fihI1tabOrampNSUmBzk54ki6BsKf3H8sPxlPczg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Sekiguchi, Yuhei</creator><creator>Niikura, Naeko</creator><creator>Kuroiwa, Ryota</creator><creator>Kano, Hiroki</creator><creator>Kosaka, Hideo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid></search><sort><creationdate>20170501</creationdate><title>Optical holonomic single quantum gates with a geometric spin under a zero field</title><author>Sekiguchi, Yuhei ; Niikura, Naeko ; Kuroiwa, Ryota ; Kano, Hiroki ; Kosaka, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/400/482</topic><topic>639/766/483/2802</topic><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Applied and Technical Physics</topic><topic>Computers</topic><topic>Data processing</topic><topic>Diamonds</topic><topic>Electron spin</topic><topic>Fault tolerance</topic><topic>Gates</topic><topic>Information processing</topic><topic>Phase (cyclic)</topic><topic>Physics</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Quantum computers</topic><topic>Quantum Physics</topic><topic>Repeaters</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Niikura, Naeko</creatorcontrib><creatorcontrib>Kuroiwa, Ryota</creatorcontrib><creatorcontrib>Kano, Hiroki</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekiguchi, Yuhei</au><au>Niikura, Naeko</au><au>Kuroiwa, Ryota</au><au>Kano, Hiroki</au><au>Kosaka, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical holonomic single quantum gates with a geometric spin under a zero field</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>11</volume><issue>5</issue><spage>309</spage><epage>314</epage><pages>309-314</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters.
Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2017.40</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2017-05, Vol.11 (5), p.309-314 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_1917693980 |
source | SpringerLink Journals; Nature |
subjects | 639/766/400/482 639/766/483/2802 Adiabatic Adiabatic flow Applied and Technical Physics Computers Data processing Diamonds Electron spin Fault tolerance Gates Information processing Phase (cyclic) Physics Polarization Polarized light Quantum computers Quantum Physics Repeaters Vacancies |
title | Optical holonomic single quantum gates with a geometric spin under a zero field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20holonomic%20single%20quantum%20gates%20with%20a%20geometric%20spin%20under%20a%20zero%20field&rft.jtitle=Nature%20photonics&rft.au=Sekiguchi,%20Yuhei&rft.date=2017-05-01&rft.volume=11&rft.issue=5&rft.spage=309&rft.epage=314&rft.pages=309-314&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2017.40&rft_dat=%3Cproquest_cross%3E1917693980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917693980&rft_id=info:pmid/&rfr_iscdi=true |