Optical holonomic single quantum gates with a geometric spin under a zero field

The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2017-05, Vol.11 (5), p.309-314
Hauptverfasser: Sekiguchi, Yuhei, Niikura, Naeko, Kuroiwa, Ryota, Kano, Hiroki, Kosaka, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 5
container_start_page 309
container_title Nature photonics
container_volume 11
creator Sekiguchi, Yuhei
Niikura, Naeko
Kuroiwa, Ryota
Kano, Hiroki
Kosaka, Hideo
description The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters. Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.
doi_str_mv 10.1038/nphoton.2017.40
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917693980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917693980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKtrtwHX0-Y1jyyl-IJCN7oOaXJnOmWaTJMMor_eGVrEjat7uHzn3MtB6J6SBSW8Wrp-55N3C0ZouRDkAs1oKWQmKskvf3WVX6ObGPeE5FwyNkObTZ9aozu88513_tAaHFvXdICPg3ZpOOBGJ4j4s007rHED_gApTFTfOjw4C2Fcf0PwuG6hs7foqtZdhLvznKOP56f31Wu23ry8rR7XmRGMpKwuuDZlodlWErB1bvQoC8uAFkAISD2-S3Odcy2FsdZYIWzNqi3To50Kzufo4ZTbB38cICa190Nw40lFJS0LyWVFRmp5okzwMQaoVR_agw5fihI1tabOrampNSUmBzk54ki6BsKf3H8sPxlPczg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917693980</pqid></control><display><type>article</type><title>Optical holonomic single quantum gates with a geometric spin under a zero field</title><source>SpringerLink Journals</source><source>Nature</source><creator>Sekiguchi, Yuhei ; Niikura, Naeko ; Kuroiwa, Ryota ; Kano, Hiroki ; Kosaka, Hideo</creator><creatorcontrib>Sekiguchi, Yuhei ; Niikura, Naeko ; Kuroiwa, Ryota ; Kano, Hiroki ; Kosaka, Hideo</creatorcontrib><description>The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters. Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2017.40</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/482 ; 639/766/483/2802 ; Adiabatic ; Adiabatic flow ; Applied and Technical Physics ; Computers ; Data processing ; Diamonds ; Electron spin ; Fault tolerance ; Gates ; Information processing ; Phase (cyclic) ; Physics ; Polarization ; Polarized light ; Quantum computers ; Quantum Physics ; Repeaters ; Vacancies</subject><ispartof>Nature photonics, 2017-05, Vol.11 (5), p.309-314</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</citedby><cites>FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</cites><orcidid>0000-0002-8850-4646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2017.40$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2017.40$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Niikura, Naeko</creatorcontrib><creatorcontrib>Kuroiwa, Ryota</creatorcontrib><creatorcontrib>Kano, Hiroki</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><title>Optical holonomic single quantum gates with a geometric spin under a zero field</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters. Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.</description><subject>639/766/400/482</subject><subject>639/766/483/2802</subject><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Applied and Technical Physics</subject><subject>Computers</subject><subject>Data processing</subject><subject>Diamonds</subject><subject>Electron spin</subject><subject>Fault tolerance</subject><subject>Gates</subject><subject>Information processing</subject><subject>Phase (cyclic)</subject><subject>Physics</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Quantum computers</subject><subject>Quantum Physics</subject><subject>Repeaters</subject><subject>Vacancies</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKtrtwHX0-Y1jyyl-IJCN7oOaXJnOmWaTJMMor_eGVrEjat7uHzn3MtB6J6SBSW8Wrp-55N3C0ZouRDkAs1oKWQmKskvf3WVX6ObGPeE5FwyNkObTZ9aozu88513_tAaHFvXdICPg3ZpOOBGJ4j4s007rHED_gApTFTfOjw4C2Fcf0PwuG6hs7foqtZdhLvznKOP56f31Wu23ry8rR7XmRGMpKwuuDZlodlWErB1bvQoC8uAFkAISD2-S3Odcy2FsdZYIWzNqi3To50Kzufo4ZTbB38cICa190Nw40lFJS0LyWVFRmp5okzwMQaoVR_agw5fihI1tabOrampNSUmBzk54ki6BsKf3H8sPxlPczg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Sekiguchi, Yuhei</creator><creator>Niikura, Naeko</creator><creator>Kuroiwa, Ryota</creator><creator>Kano, Hiroki</creator><creator>Kosaka, Hideo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid></search><sort><creationdate>20170501</creationdate><title>Optical holonomic single quantum gates with a geometric spin under a zero field</title><author>Sekiguchi, Yuhei ; Niikura, Naeko ; Kuroiwa, Ryota ; Kano, Hiroki ; Kosaka, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f63ac76a2b90edf5caa2b6d2e16e00e9a74915a53a94cddcd44df28b2a4201433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/400/482</topic><topic>639/766/483/2802</topic><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Applied and Technical Physics</topic><topic>Computers</topic><topic>Data processing</topic><topic>Diamonds</topic><topic>Electron spin</topic><topic>Fault tolerance</topic><topic>Gates</topic><topic>Information processing</topic><topic>Phase (cyclic)</topic><topic>Physics</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Quantum computers</topic><topic>Quantum Physics</topic><topic>Repeaters</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Niikura, Naeko</creatorcontrib><creatorcontrib>Kuroiwa, Ryota</creatorcontrib><creatorcontrib>Kano, Hiroki</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekiguchi, Yuhei</au><au>Niikura, Naeko</au><au>Kuroiwa, Ryota</au><au>Kano, Hiroki</au><au>Kosaka, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical holonomic single quantum gates with a geometric spin under a zero field</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>11</volume><issue>5</issue><spage>309</spage><epage>314</epage><pages>309-314</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters. Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2017.40</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2017-05, Vol.11 (5), p.309-314
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_1917693980
source SpringerLink Journals; Nature
subjects 639/766/400/482
639/766/483/2802
Adiabatic
Adiabatic flow
Applied and Technical Physics
Computers
Data processing
Diamonds
Electron spin
Fault tolerance
Gates
Information processing
Phase (cyclic)
Physics
Polarization
Polarized light
Quantum computers
Quantum Physics
Repeaters
Vacancies
title Optical holonomic single quantum gates with a geometric spin under a zero field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20holonomic%20single%20quantum%20gates%20with%20a%20geometric%20spin%20under%20a%20zero%20field&rft.jtitle=Nature%20photonics&rft.au=Sekiguchi,%20Yuhei&rft.date=2017-05-01&rft.volume=11&rft.issue=5&rft.spage=309&rft.epage=314&rft.pages=309-314&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2017.40&rft_dat=%3Cproquest_cross%3E1917693980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917693980&rft_id=info:pmid/&rfr_iscdi=true