Optical holonomic single quantum gates with a geometric spin under a zero field

The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2017-05, Vol.11 (5), p.309-314
Hauptverfasser: Sekiguchi, Yuhei, Niikura, Naeko, Kuroiwa, Ryota, Kano, Hiroki, Kosaka, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin–orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin–orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters. Ground-state spin rotations in a nitrogen–vacancy centre in diamond are manipulated within nanoseconds of a near-resonant light field being applied. Pauli quantum gates are demonstrated using the geometric spin preparation and read-out techniques.
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2017.40