The effect of the SiC(0001) surface morphology on the growth of epitaxial mono-layer graphene nanoribbons

Graphene nanoribbons (GNRs) are promising for applications in nanoelectronics due to their unique properties. Therefore, achieving the controlled and high-quality synthesis of GNRs is anticipated to be of great importance. One of the methods which shows great potential is the growth of GNRs on surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-05, Vol.115, p.162-168
Hauptverfasser: Galves, L.A., Wofford, J.M., Soares, G.V., Jahn, U., Pfüller, C., Riechert, H., Lopes, J.M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene nanoribbons (GNRs) are promising for applications in nanoelectronics due to their unique properties. Therefore, achieving the controlled and high-quality synthesis of GNRs is anticipated to be of great importance. One of the methods which shows great potential is the growth of GNRs on surface facets of SiC(0001) by the surface graphitization method. In this report we studied the dependency of the GNR width on growth temperature and SiC substrate miscut angle (or initial step height). While a linear growth rate best describes the growth in lower step heights, a nonlinear rate is observed for substrates with higher steps, which is also associated with the formation of few-layer graphene on the step edges. The structural characterization of the samples was performed by means of atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2017.01.018