The Representation Type of Determinantal Varieties

This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves E of arbitrary high rank on a general standard (resp. linear) determinantal scheme X ⊂ ℙ n of codimension c ≥ 1, n − c ≥ 1 and defined by the maximal minors of a t × ( t +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2017-08, Vol.20 (4), p.1029-1059
Hauptverfasser: Kleppe, Jan O., Miró-Roig, Rosa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves E of arbitrary high rank on a general standard (resp. linear) determinantal scheme X ⊂ ℙ n of codimension c ≥ 1, n − c ≥ 1 and defined by the maximal minors of a t × ( t + c −1) homogeneous matrix A . The sheaves E are constructed as iterated extensions of sheaves of lower rank. As applications: (1) we prove that any general standard determinantal scheme X ⊂ ℙ n is of wild representation type provided the degrees of the entries of the matrix A satisfy some weak numerical assumptions; and (2) we determine values of t , n and n − c for which a linear standard determinantal scheme X ⊂ ℙ n is of wild representation type with respect to the much more restrictive category of its indecomposable Ulrich sheaves, i.e. X is of Ulrich wild representation type.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-017-9673-4