The Representation Type of Determinantal Varieties
This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves E of arbitrary high rank on a general standard (resp. linear) determinantal scheme X ⊂ ℙ n of codimension c ≥ 1, n − c ≥ 1 and defined by the maximal minors of a t × ( t +...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2017-08, Vol.20 (4), p.1029-1059 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work is entirely devoted to construct huge families of indecomposable arithmetically Cohen-Macaulay (resp. Ulrich) sheaves
E
of arbitrary high rank on a general standard (resp. linear) determinantal scheme
X
⊂
ℙ
n
of codimension
c
≥ 1,
n
−
c
≥ 1 and defined by the maximal minors of a
t
× (
t
+
c
−1) homogeneous matrix
A
. The sheaves
E
are constructed as iterated extensions of sheaves of lower rank. As applications: (1) we prove that any general standard determinantal scheme
X
⊂
ℙ
n
is of wild representation type provided the degrees of the entries of the matrix
A
satisfy some weak numerical assumptions; and (2) we determine values of
t
,
n
and
n
−
c
for which a linear standard determinantal scheme
X
⊂
ℙ
n
is of wild representation type with respect to the much more restrictive category of its indecomposable Ulrich sheaves, i.e.
X
is of Ulrich wild representation type. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-017-9673-4 |