The Fixed Point Property for Ordered Sets of Interval Dimension 2
We provide a polynomial time algorithm that identifies if a given finite ordered set is in the class of d2-collapsible ordered sets. For a d2-collapsible ordered set, the algorithm also determines if the ordered set is connectedly collapsible. Because finite ordered sets of interval dimension 2 are...
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2017-07, Vol.34 (2), p.307-322 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a polynomial time algorithm that identifies if a given finite ordered set is in the class of d2-collapsible ordered sets. For a d2-collapsible ordered set, the algorithm also determines if the ordered set is connectedly collapsible. Because finite ordered sets of interval dimension 2 are d2-collapsible, in particular, the algorithm determines in polynomial time if a given finite ordered set of interval dimension 2 has the fixed point property. This result is also a first step in investigating the complexity status of the question whether a given collapsible ordered set has the fixed point property. |
---|---|
ISSN: | 0167-8094 1572-9273 |
DOI: | 10.1007/s11083-016-9401-4 |