The Fixed Point Property for Ordered Sets of Interval Dimension 2

We provide a polynomial time algorithm that identifies if a given finite ordered set is in the class of d2-collapsible ordered sets. For a d2-collapsible ordered set, the algorithm also determines if the ordered set is connectedly collapsible. Because finite ordered sets of interval dimension 2 are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Order (Dordrecht) 2017-07, Vol.34 (2), p.307-322
1. Verfasser: Schröder, Bernd S. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a polynomial time algorithm that identifies if a given finite ordered set is in the class of d2-collapsible ordered sets. For a d2-collapsible ordered set, the algorithm also determines if the ordered set is connectedly collapsible. Because finite ordered sets of interval dimension 2 are d2-collapsible, in particular, the algorithm determines in polynomial time if a given finite ordered set of interval dimension 2 has the fixed point property. This result is also a first step in investigating the complexity status of the question whether a given collapsible ordered set has the fixed point property.
ISSN:0167-8094
1572-9273
DOI:10.1007/s11083-016-9401-4