A Comparison of Main and Side Channel Physical and Water Quality Metrics and Habitat Complexity in the Middle Mississippi River

Worldwide large rivers have been severely modified by human intervention. Many modifications result in disconnection of the river from floodplain and off‐channel habitats generally characterized by lower velocities and Copyright © 2016 John Wiley & Sons, Ltd. shallower depths relative to the mai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:River research and applications 2017-07, Vol.33 (6), p.879-888
Hauptverfasser: Sobotka, M. J., Phelps, Q. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Worldwide large rivers have been severely modified by human intervention. Many modifications result in disconnection of the river from floodplain and off‐channel habitats generally characterized by lower velocities and Copyright © 2016 John Wiley & Sons, Ltd. shallower depths relative to the main channel, conditions vital to many organisms. Extensive levees on the Middle Mississippi River (MMR) have cut off backwater systems and disconnected the river from 80% of its floodplain. However, the system is characterized by large side channels associated with islands. We examined a long term data set for differences in physical (e.g. depth and velocity) and water quality metrics (e.g. temperature, suspended solids, dissolved oxygen, chlorophyll, % organic matter) between the main and side channels of a 128‐km reach of the MMR. We compared variability between main and side channels using the coefficient of variation (COV). All metrics differed between habitats. Side channels were shallower with lower velocities and had greater mean and COV of % organic matter and more variable dissolved oxygen concentrations. Velocity, temperature, and suspended solids were similar in the spring. COVs were lowest in both habitats during the spring for all metrics except temperature and DO. Resource management in the MMR tends to focus on maintaining existing side channels because of the difficulty of working in the heavily used navigation channel. This study shows that these actions protect areas that function differently than the main channel for most of the year. However, our results also highlight the need for restoration activities aimed at restoring floodplain connectivity, especially during the spring. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:1535-1459
1535-1467
DOI:10.1002/rra.3061